Silk fibroin-polyurethane scaffolds for tissue engineering

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Silk fibroin (SF) is a highly promising protein for its surface and structural properties, associated with a good bio- and hemo-compatibility. However, its mechanical properties and architecture cannot be easily tailored to meet the requirements of specific applications.

In this work, SF was used to modify the surface properties of polyurethanes (PUs), thus obtaining 2D and 3D scaffolds for tissue regeneration. PUs were chosen for their well known advantageous properties and versatility; they can be obtained either as 2D (films) or 3D (foams) substrates. Films of a medical-grade poly-carbonate-urethane were prepared by solvent casting; PU foams were purposely designed and prepared with a morphology (porosity and cell size) adequate for cell growth. PU substrates were coated with fibroin by a dipping technique. To stabilize the coating layer, a conformational change of the protein from the α-form (water soluble) to the β-form (not water soluble) was induced.

Novel methodology in UV spectroscopy were developed for quantitatively analyzing the SF-concentration in dilute solutions. Pure fibroin was used as standard, as an alternative to the commonly used albumin, allowing real concentration values to be obtained.

SF-coatings showed good stability in physiological-like conditions. A treatment with methanol further stabilized the coating.

Preliminary results with human fibroblasts indicated that SF coating promote cell adhesion and growth, suggesting that SF-modified PUs appear to be suitable scaffolds for tissue engineering applications.

© 2001 Kluwer Academic Publishers