Atiyah, M., et al.: 1994, ‘Responses to “theoretical mathematics”: Towards a cultural synthesis of mathematics and theoretical physics', *Bulletin of the American Mathematical Society* 30(2), 178–207.

Balacheff, N.: 1997, *Preuve: International Newsletter on the Teaching and Learning of Mathematical Proof*, in http://www-didactique.imag.fr/preuve/

Barnard, T., et al.: 1996, ‘Teaching proof', *Mathematics Teaching* 155, 6–39.

Barwise, J. and Etchemendy, J.: 1991, ‘Visual information and valid reasoning', in W. Zimmerman and S. Cunninghan (eds.), *Visualization in Teaching and Learning Mathematics*, The Mathematics Association of America, Washington, pp. 9–24.

Barwise, J. and Etchemendy, J.: 1996, ‘Heterogeneous logic', in G. Allwain and J. Barwise (eds.), *Logical Reasoning with Diagrams*, Oxford University Press, New York, pp. 179–201.

Bell, A.: 1976, ‘A study of pupils’ proof-explanations in mathematical situations',

*Educaation Studies in Mathematics* 7, 23–40.

CrossRefBrown, J.R.: 1999, *Philosophy of Mathematics: An Introduction to the World of Proofs and Pictures*, Routledge, London.

Borwein, P. and Jörgenson, L.: 1997, ‘Visible structures in number theory', in http://www.cecm.sfu.ca/~loki/Papers/Numbers/node3.html.

Cabri Geometry II (computer software).: 1996, Texas Instruments Incorporated.

de Villiers, M.: 1990, ‘The role and function of proof in mathematics', *Pythagoras* 24, 17–24.

de Villiers, M.: 1999, *Rethinking proof with the Geometer's Sketchpad*, Key Curriculum Press, Emeryville, CA.

Fischbein, E.: 1982, ‘Intuition and proof', *For the Learning of Mathematics* 3(2), 9–18, 24.

Francis, G.: 1996, ‘Mathematical visualization: Standing at the crossroads', in http://www.cecm.sfu.ca/projects/PhilVisMath/vis96panel.html

Giaquinto, M.: 1994, ‘Epistemology of visual thinking in elementary real analysis', *British Journal for the Philosophy of Science* 45, 789–813.

Greeno, J.: 1994, ‘Comments on Susanna Epp's chapter', in A. Schoenfeld (ed.), *Mathematical Thinking and Problem Solving,* Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 270–278.

Hanna, G.: 1983, *Rigorous proof in mathematics education*, OISE Press, Toronto.

Hanna, G.: 1990, ‘Some pedagogical aspects of proof',

*Interchange* 21(1), 6–13.

CrossRefHanna, G. and Jahnke, H.N.: 1996, ‘Proof and proving', in A. Bishop, K. Clements, C. Keitel, J. Kilpatrick and C. Laborde (eds.), *International Handbook of Mathematics Education*, Kluwer Academic Publishers, Dordrecht, pp 877–908.

Hanna, G. and Jahnke, H.N.: 1999, ‘Using arguments from physics to promote understanding of mathematical proofs', in O. Zaslavsky (ed.), *Proceedings of the twenty-third conference of the international group for the psychology of mathematics education*, Vol. 3, 73–80. Haifa, Israel.

Hersh, R.: 1993, ‘Proving is convincing and explaining',

*Educational Studies in Mathematics* 24(4), 389–399.

CrossRefJaffe, A. and Quinn, F.: 1993, ‘“Theoretical mathematics”: Towards a cultural synthesis of mathematics and theoretical physics', *Bulletin of the American Mathematical Society* 29(1), 1–13.

Jackiw, N.: 1991, *The geometer's sketchpad* (computer software), Key Curriculum Press, Berkeley, CA.

Manin, Yu.: 1977, *A course in mathematical logic*, Springer-Verlag, New York.

Manin, Yu.: 1992, ‘Contribution in panel discussion on “The theory and practice of proof”, 1, *Proceedings of the seventh International Congress on Mathematical Education (Montreal, Canada)*.

Manin, Yu.: 1998, ‘Truth, rigour, and common sense', in H.G. Dales and G. Oliveri (eds.), *Truth in Mathematics*, Oxford University Press, Oxford, pp. 147–159.

Mason, J.: 1991, ‘Questions about geometry', in D. Pimm and E. Love (eds.), *Teaching and Learning Mathematics: A Reader*, Holder and Stoughton, London, pp. 77–99.

National Council of Teachers of Mathematics (NCTM): 1989, *Curriculum and Evaluation Standards for School Mathematics*, Commission on Standards for School Mathematics, Reston, VA.

National Council of Teachers of Mathematics (NCTM): 2000, *Principles and Standards for School Mathematics*, Commission on Standards for School Mathematics, Reston, VA.

Noss, R.: 1994, ‘Structure and ideology in the mathematics curriculum', *For the learning of mathematics* 14(1), 2–10.

Palais, R.S.: 1999, ‘The visualization of mathematics: Toward a mathematical exploratorium', *Notices of the AMS* 46(6), 647–658.

Polya, G.: 1957, *How to Solve it: A New Aspect of Mathematical Method*, Doubleday, New York.

Rav, Y.: 1999, ‘Why do we prove theorems?', *Philosophia Mathematica* 7(3), 5–41.

Simon, M.A. and Blume, G.W.: 1996, ‘Justification in the mathematics classroom: A study of prospective elementary teachers',

*The Journal of Mathematical Behavior* 15, 3–31.

CrossRefSimpson, A.: 1995, ‘Developing a proving attitude', *Conference Proceedings: Justifying and Proving in School Mathematics*, Institute of Education, University of London, London, pp. 39–46.

Steiner, M.: 1978, ‘Mathematical explanation',

*Philosophical Studies* 34, 135–151.

CrossRefThurston, W.P.: 1994, ‘On proof and progress in mathematics', *Bulletin of the American Mathematical Society* 30(2), 161–177.

Wittmann, E.C. and Müller, G.N.: 1988, ‘When is a proof a proof?', *Bulletin of Social Mathematics in Belgium* 1, 15–40.

Wu, H.: 1996, ‘The mathematician and the mathematics education reform', *Notices of the American Mathematical Society* 43(12), 1531–1537.