Anglano, C., Giordana, A., Lo Bello, G. & Saitta, L. (1997). A Network Genetic Algorithm for Concept Learning. *Proc. 7th Int. Conf. Genetic Algorithms*, 434-441. Morgan Kaufmann.

Araujo, D. L. A., Lopes, H. S. & Freitas, A. A. (1999). A Parallel Genetic Algorithm for Rule Discovery in Large Databases. *Proc. 1999 IEEE Systems, Man and Cybernetics Conf., v. III*, 940-945. Tokyo.

Banzhaf, W., Nordin, P., Keller, R.E. & Francone, F.D. (1998) *Genetic Programming, an Introduction: on the Automatic Evolution of Computer Programs and its Applications*. Morgan Kaufmann.

Bhandari, I. (1993). Attribute Focusing: Machine-assisted Knowledge Discovery Applied to Software Production Process Control. *Proc. 1993 Workshop on Knowledge Discovery in Databases*, 61-69. AAAI Press.

Bhandari, I. & Biyani, S. (1994). On the role of statistical significance in exploratory data analysis. *Proc. AAAI-94 Workshop on Knowledge Discovery in Databases*, 61-72. AAAI Press.

Brazdil, P. B. & Henery, R. J. (1994). Analysis of Results. In Michie, D., Spiegelhalter, D.J. & Taylor, C.C. (eds.) *Machine Learning, Neural and Statistical Classification*, Chapter 10. Ellis Horwood.

Carvalho, D. R. & Freitas, A. A. (2000a). A Hybrid Decision Tree/Genetic Algorithm for Coping with the Problem of Small Disjuncts in Data Mining. *Proc. Genetic and Evolutionary Computation Conf. (GECCO-2000)*, 1061-1068. Las Vegas, NV, USA.

Carvalho, D. R. & Freitas,A. A. (2000b). A Genetic Algorithm-based Solution for the Problem of Small Disjuncts. *Principles of Data Mining and Knowledge Discovery (Proc. 4th European Conf., PKDD-2000). Lecture Notes in Artificial Intelligence 1910*, 345-352. Springer-Verlag.

Danyluk, A. P. & Provost, F. J. (1993). Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network. *Proc. 10th Int. Conf. Machine Learning*, 81-88.

Dhar, V., Chou, D. & Provost, F. (2000). Discovering Interesting Patterns for Investment Decision Making with GLOWER-A Genetic Learner Overlaid with Entropy Reduction. *Data Mining & Knowledge Discovery*
**4**(4): 251-280.

Domingos, P. (1995). Rule Induction and Instance-based Learning: a Unified Approach. *Proc. 14th Int. Joint Conf. on Artif. Intel. (IJCAI-95)*, 1226-1232.

Dzeroski, S. & Lavrac, N. (1993). Inductive Learning in Deductive Databases. *IEEE Trans. Knowledge and Data Engineering*
**5**(6): 939-949.

Fabris, C. C. & Freitas, A. A. (1999). Discovering Surprising Patterns by Detecting Occurrences of Simpson's Paradox. In Bramer, M. et al. (eds.) *Research and Development in Intelligent Systems XVI*, 148-160. Springer-Verlag.

Fabris, C. C. & Freitas, A. A. (2000). Incorporating Deviation-detection Functionality into the OLAP Paradigm. *Unpublished manuscript*.

Frawley, W. J., Piatetsky-Shapiro, G. & Matheus, C. J. (1991). Knowlege Discovery in Databases: An Overview. (1991) In Piatetsky-Shapiro, G. & Frawley, W.J. (eds.) *Knowledge Discovery in Databases*, 1-27. AAAI/MIT Press.

Freitas, A. A. (1998). On Objective Measures of Rule Surprisingness. *Principles of Data Mining & Knowledge Discovery (Proc. PKDD*'98)-Lecture Notes in Artif. Intel. 1510, 1-9. Springer-Verlag.

Freitas, A. A. (ed.) (1999). *Data Mining with Evolutionary Algorithms: Research Directions-Papers from the AAAI Workshop*. Technical Report WS-99-06. AAAI.

Freitas,A. A. (ed.) (2000). DataMining with Evolutionary AlgorithmsWorkshop. In Wu, A. S. (ed.) *Proc. of the 2000 Genetic and Evolutionary Computation Conf. Workshop Program*, 69-92. Las Vegas, NV, USA.

Freitas, A. A. & Lavington, S. H. (1998). *Mining Very Large Databases with Parallel Processing.* Kluwer.

Greene, D. P. & Smith, S. F. (1993). Competition-based Induction of Decision Models from Examples. *Machine Learning*
**13**, 229-257.

Gardner, H. (1984). *The Mind*'s New Science: A History of the Cognitive Revolution*.* Basic Books.

Goil, S. & Choudhary, A. (1997). High Performance OLAP and Data Mining on Parallel Computers. *Data Mining and Knowledge Discovery*
**1**(4): 391-417.

Holte, R. C., Acker, L. E. & Porter, B.W. (1989). Concept Learning and the Problem of Small Disjuncts. *Proc. Int. Joint Conf. Artif. Intel. (IJCAI-89)*, 813-818.

Hu, Y-J. (1998). A Genetic Programming Approach to Constructive Induction. *Genetic Programming 1998: Proc. 3rd Annual Conf.*, 146-151. Morgan Kaufmann.

Kuscu, I. (1999). A Genetic Constructive Induction Model. *Proc. Congress on Evolutionary Computation (CEC-99)*, 212-217. Washington D.C., USA.

Lavrac, N. & Dzeroski, S. (1994). *Inductive Logic Programming: Techniques and Applications*. Ellis Horwood.

Liu, H. & Motoda, H. (1998). *Feature Extraction, Construction and Selection: A Data Mining Perspective*. Kluwer.

Liu, B., Hsu, W. & Ma, Y. (1999). Pruning and Summarizing the Discovered Associations. *Proc. 4th Int. Conf. Knowledge Discovery and Data Mining*, 125-134. ACM.

Michalewicz, Z. (1996). *Genetic Algorithms + Data structures = Evolution Programs*, 3rd Ed. Springer-Verlag.

Michalski, R. W. (1983). A Theory and Methodology of Inductive Learning. *Artificial Intelligence*
**20**: 111-161.

Michie, D., Spiegelhalter, D. J. & Taylor, C. C. (1994). Conclusions. In Michie, D., Spiegelhalter, D. J. & Taylor, C. C. (eds.) *Machine Learning, Neural and Statistical Classification*, Chapter 11, 213-227. Ellis Horwood.

Nazar, K. & Bramer, M. A. (1999). Estimating Concept Difficulty with Cross Entropy. In Bramer, M. A. (ed.) *Knowledge Discovery and Data Mining*, 3-31. London: The Institution of Electrical Engineers.

Neri, F. & Giordana, A. (1995). A Parallel Genetic Algorithm for Concept Learning. *Proc. 6th Int. Conf. Genetic Algorithms*, 436-443. Morgan Kaufmann.

Newson, G. (1991). Simpson's Paradox Revisited. *The Mathematical Gazette*
**75**(473): 290-293. Oct. 1991.

Pazzani, M. J. (2000). Knowledge Discovery from Data? *IEEE Intel. Systems, March/April 2000*, 10-12.

Piatetsky-Shapiro, G. (1991). Knowledge Discovery in Real Databases: A Report on the IJCAI-89 Workshop. *AI Magazine*, Vol. 11, No. 5, 68-70, Jan. 1991.

Provost, F. & Kolluri, V. (1999). A Survey of Methods for Scaling up Inductive Algorithms. *Data Mining and Knowledge Discovery*
**3**(2): 131-195.

Quinlan, J. R. (1990). Learning Logical Definitions from Relations. *Machine Learning*
**5**(3): 239-266.

Quinlan, J. R. (1993). *C4.5: Programs for Machine Learning*. Morgan Kaufmann.

Rendell, L. & Cho, H. (1990). Empirical Learning as a Function of Concept Character. *Machine Learning*
**5**(3): 267-298.

Rendell, L. & Seshu, R. (1990). Learning Hard Concepts Through Constructive Induction: Framework and Rationale. *Computational Intelligence*
**6**: 247-270.

Rendell, L. & Ragavan, H. (1993). Improving the Design of Induction Methods by Analyzing Algorithm Functionality and Data-based Concept Complexity. *Proc. 13th Int. Joint Conf. on Artif. Intel. (IJCAI-93)*, 952-958.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. *IBM journal of Research and Development*
**3**: 211-229. Reprinted in E. A. Feigenbaum (ed.) *Computers and Thought*. McGraw-Hill, 1963.

Schaffer, C. (1993). Overfitting Avoidance as Bias. *Machine Learning*
**10**: 153-178.

Simpson, E. H. (1951). The Interpretation of Interaction in Contingency Tables. *Journal of the Royal Statistical Society, Series B*
**13**: 238-241.

Srinivasan, A. & King, R. D. (1999). Feature Construction with Inductive Logic Programming: a Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes. *Data Mining and Knowledge Discovery*
**3**(1): 37-57.

Taha, I. A. & Ghosh, J. (1999). Symbolic Interpretation of Artificial Neural Networks. *IEEE Trans. Knowledge and Data Engineering*
**11**(3):, 448-463. May/June 1999.

Ting, K. M. (1994). The Problem of Small Disjuncts: Its Remedy in Decision Trees. *Proc. 10th Canadian Conf. Artif. Intel.*, 91-97.

Vaughn, M. L. (1996). Interpretation and Knowledge Discovery from the Multilayer Perceptron Network: Opening the Black Box. *Neural Comput. & Appl.*
**4**: 72-82.

Wagner, C. H. (1982). Simpson's Paradox in Real Life. *The American Statistician*
**36**(1): 46-48. Feb. 1982.

Weiss, G. M. (1995). Learning with Rare Cases and Small Disjuncts. *Proc. 12th Int. Conf. Machine Learning (ML-95)*, 558-565. Morgan Kaufmann.

Weiss, G. M. (1998). The Problem with Noise and Small Disjuncts. *Proc. Int. Conf. Machine Learning (ICML-98)*, 574-578. Morgan Kaufmann.

Weiss, G. M. and Hirsh, H. (2000). A Quantitative Study of Small Disjuncts. *Proc. 17th Nat. Conf. on Artificial Intelligence (AAAI-2000)*, 665-670. AAAI Press.

Zytkow, J. (ed.) (1999). Special Session on Data Mining. In: Angeline, P. (ed.), *Proc. 1999 Congress on Evolutionary Computation (CEC-99)*, 1307-1345.