, Volume 56, Issue 6, pp 667-673

Control of Phosphate Concentration through Adsorption and Desorption Processes in Groundwater and Seawater Mixing at Sandy Beaches in Tokyo Bay, Japan

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Field observation was conducted to monitor phosphate concentrations in groundwater and seawater mixing at two sandy beaches in Futtsu and Miura in Tokyo Bay, Japan. Dissolved phosphate concentrations were measured along transects from fresh groundwater aquifer to seawater adjacent the beaches. The concentrations were often high (up to 46 µM) in fresh groundwater samples (Cl < 0.2‰). Coastal seawater, on the other hand, exhibited low phosphate concentrations (1.5 µM or less). Along the transects, phosphate generally displayed non-conservative behavior during mixing of fresh and saline waters in the aquifer; concentrations as high as 100 µM were found around the upper limit of seawater intrusion (Cl = ∼2‰). Laboratory experiments were executed to identify the processes that control the phosphate behavior in the mixing processes. The results revealed that adsorption-desorption processes by the aquifer sand particles could significantly control the phosphate concentrations in the groundwater. Furthermore, the adsorption and/or desorption was found to be a function of salinity; the equilibrium concentration of dissolved phosphate in slurry of sand and water was the highest in freshwater and decreased considerably in saline water. The extreme concentration of phosphate may be caused by release from sand particles coinciding with the rapid change in salinity with tide.