Alvarez, L., Gousseau Y., and Morel J.-M. 1999. The size of objects in natural and artificial images. *Advances in Imaging and Electron Physics*, vol. 111. Academic Press: San Diego, CA, pp. 167-242.

Buccigrossi, R.W. and Simoncelli, E.P. 1999. Image compression via joint statistical characterization in the wavelet domain. *Proc. IEEE Trans. on Image Processing*, 8(12):1688-1701.

Field, D.J. 1987. Relations between the statistics of natural images and the response properties of cortical cells.*J. Optical Society of America*, A4:2379-2394.

Freeman, W.T. and Pasztor, E.C. 1999. Learning low-level vision. In *Proc. IEEE Int. Conf. on Computer Vision*, Corfu, Greece.

Grenander, U. and Srivastava, A. 2000. Probability models for clutter in natural images, *IEEE Trans. PAMI*, in press.

Hallinan P.W., Gordon G.G., Yuille, A.L., Giblin, P., and Mumford, D. 1999. Two-and three-dimensional patterns of the face. A.K. Peters Ltd, Natick, MA.

Heeger, D.J. and Bergen, J.R. 1995. Pyramid based texture analysis/ synthesis. In *Computer Graphics Proc.*, pp. 229-238.

Huang, J., Lee, A., and Mumford, D. 2000. Statistics of range images. In *Proc. IEEE Conf. on Computer Vision and Pattern Recognition*, Vol. 1, Hilton Head Island, SC, pp. 324-331.

Huang, J. and Mumford, D. 1999. Statistics of natural images and models. In *Proc. IEEE Conf. on Computer Vision and Pattern Recognition*, *Vol. 1*, Fort Collins, CO, pp. 541-547.

Isard, M. and Blake, A. 1998. CONDENSATION-conditional density propagation for visual tracking. *Int. J. Computer Vision*, 291:5-28.

Kendall, W.S. and ThÔnnes, E. 1998. *Perfect Simulation in Stochastic Geometry*. Preprint 323, Department of Statistics, University of Warwick, UK.

Kingman, J.F.C. 1993. *Poisson Processes*. Oxford Studies in Probability. Clarendon Press, Oxford.

Lee, A.B. and Mumford, D. 1999. An occlusion model generating scale-invariant images. In *Proc. IEEEWorkshop on Statistical and Computational Theories of Vision*, Fort Collins, CO.

Malik, J., Belongie, S., Shi, J., and Leung, T. 1999. Textons, contours and regions: Cue integration in image segmentation. In *Proc. IEEE Int. Conf. Computer Vision*, Corfu, Greece.

Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. *IEEE Trans. PAMI*, 11:674-693.

Matheron, G. 1968. Modèle séquentiel de partition aléatoire. Technical report, CMM, 1968.

Matheron, G. 1975. *Random Sets and Integral Geometry*. JohnWiley and Sons: New York. Occlusion Models for Natural Images 59

Moulin, P. and Liu, J. 1999. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. *IEEE Trans. on Information Theory*, 453:909-919.

Mumford, D. and Gidas, B. 2000. Stochastic models for generic images. *Quarterly Journal of Applied Mathematics* Volume LIX, Number 1, March 2001, pp. 85-111.

Olshausen, B.A. and Field, D.J. 1996. Natural image statistics and efficient coding. *Network*, 7:333-339.

Ruderman, D.L. 1994. The statistics of natural images. *Network*, 5(4):517-548.

Ruderman, D.L. 1997. Origins of scaling in natural images. *Vision Research*, 37(23):3385-3395.

Ruderman, D.L. and Bialek, W. 1994. Statistics of natural images: scaling in the woods. *Physical Review Letters*, 73(6):814-817.

Serra, J.P. 1982. *Image Analysis and Mathematical Morphology*. Academic Press: London.

Simoncelli, E.P. 1999. Modeling the joint statistics of images in the wavelet domain. In *Proc. SPIE 44th Annual Meeting, Vol. 3813*, Denver, Colorado.

Simoncelli, E.P. and Adelson, E.H. 1996. Noise removal via bayesianwavelet coring. In *Third Int'l Conf. on Image Processing*, Lausanne, Switzerland, pp. 379-383.

Sullivan, J., Blake, A., Isard, M., and MacCormick, J. 1999. Object localization by Bayesian correlation. In *Proc. Int. Conf. Computer Vision*, pp. 1068-1075.

van Hateren, J.H. and van der Schaaf, A. 1998. Independent component filters of natural images compared with simple cells in primary visual cortex. *Proc. R. Soc. Lond.*, B265:359-366.

Wainwright, M.J. and Simoncelli, E.P. 2000. Scale mixtures of gaussians and the statistics of natural images. In *Advances in Neural Information Processing Systems* 12, Solla, Leen, and Müller(Eds.), MIT Press: Cambridge, MA, pp. 885-861.

Zetzsche, B., Wegmann, B., and Barth, E. 1993. Nonlinear aspects of primary vision: Entropy reduction beyond decorrelation. In *Int'l Symp. Soc. for Info. Display, Vol. 24*, pp. 933-936.

Zhu, S.C. and Guo, C. 2000. Mathematical modeling of clutter: Descriptive vs. generative models. In *Proc. of the SPIE AeroSense Conf. on Automatic Target Recognition*, Orlando, FL.

Zhu, S.C., Luo, Q., and Zhang, R. 1999. Effective statistical inference by data-driven markov chain Monte-Carlo. Technical Report, Dept. of Computer and Information Sciences, Ohio State University, Columbus, OH.

Zhu, S. and Mumford, D. 1997. Prior learning and Gibbs reactiondiffusion. *IEEE Trans PAMI*, 19(11):1236-1250.

Zhu, S.C., Wu, Y.N., and Mumford, D. 1998. FRAME: Filters, random field and maximum entropy-towards a unified theory for texture modeling.*Int'l J. Computer Vision*, 27(2):1-20.