1.

J. Ball and R. James, *The Mathematics of Microstructure*. Birkhäuser, to appear.

2.

J. Ball, R. James, R. Pego and P. Swart, On the dynamics of fine structure. *J. Nonlinear Sci.*
**1** (1991) 17-70.

3.

P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions. *J. Stat. Phys.*
**95** (1999) 1119-1139.

4.

P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions. *Arch. Rational Mech. Anal.*
**138** (1997) 105-136.

5.

D. Brandon, T. Liu and R. Rogers, Phase transitions and hysteresis in nonlocal and order parameter models. *Meccanica*
**30**(5) (1995) 541-565.

6.

J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval. *Arch. Rational Mech. Anal.*
**86** (1984) 317-351.

7.

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability. *J. Differential Equations*
**155** (1999) 17-43.

8.

G. Dal Maso, *An Introduction to 0-convergence*. *Progress in Nonlinear Differential Equations and Applications*. Birkhäuser, Boston (1993).

9.

J. Ericksen, Equilibrium of bars. *J. Elasticity*
**5** (1975) 191-201.

10.

L. Evans and R. Gariepy, *Measure Theory and Fine Properties of Functions*. CRC Press, Boca Raton, FL (1992).

11.

R. FitzHugh, *Biological Engineering*, H. Schwan (ed.), McGrow-Hill, New York (1969).

12.

R. Fosdick and D. Mason, Single phase energy minimizers for materials with nonlocal spatial dependence. *Quart. Appl. Math.*
**54**(1) (1996) 161-195.

13.

R. Fosdick and D. Mason, On a model of nonlocal continuum mechanics Part II: Structure, Asymptotics, and Computations. *J. Elasticity*
**48** (1997) 51-100.

14.

R. Fosdick and D. Mason, On a model of nonlocal continuum mechanics, Part I: Existence and regularity. *SIAM J. Appl. Math.*
**58**(4) (1998) 1278-1306.

15.

E. Hewitt and K. Stromberg, *Real and Abstract Analysis*. Springer, Berlin (1965).

16.

S. Kartha, D. Krumhansl, J. Sethna and L. Wickman, Disorder driven pretransitional tweed in martensitic transformations. *Phys. Rev. B*
**52** (1995) 803-822.

17.

A. Khachaturian, *Theory of Structural Deformations in Solids*. Wiley, New York (1983).

18.

M. Killough, A diffusion interface approach to the development of microstructure in martensite, PhD Thesis, New York University (1998).

19.

R. Kohn and S.Müller, Surface energy and microstructure in coherent phase transitions. *Comm. Pure. Appl. Math.*
**47** (1994) 405-435.

20.

M. Luskin, On the computation of crystalline microstructure. *Acta Numerica*
**5** (1996) 191-258.

21.

L. Modica, The gradient of phase transitions and the minimal interface criterion. *Arch. Rational Mech. Anal.*
**98** (1987) 357-383.

22.

S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. *Cal. Var. Partial Diff. Equations*
**1** (1993) 169-204.

23.

S. Müller, *Variational Models for Microstructure and Phase Transitions*, Lecture Notes. Max-Plank-Institut, Leipzig (1998).

24.

R. Peierls, The size of a dislocation. *Proc. Phys. Soc.*
**52** (1940) 34-37.

25.

M. Pitteri and G. Zanzotto, *Continuum Models of Phase Transitions and Twinning in Crystals*. CRC/Chapman & Hall, London, to appear.

26.

X. Ren and M. Winter, Young measures in a nonlocal phase transition problem. *Proc. Roy. Soc. Edinburgh A*
**127** (1997) 615-637.

27.

R. Rogers and L. Truskinovsky, Discretization and hysteresis. *Physica B*
**233** (1997) 370-375.

28.

A. Roytburd, Martensitic transformation as a typical phase trnsformation in solids. *Solid State Phys.*
**34** (1978) 317-390.

29.

M. Slemrod, Admissibility criteria for propagating phase boundaries in a Van Der Waals fluid. *Arch. Rational Mech. Anal.*
**81** (1983) 301-315.

30.

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prizmatic bars. *Philos. Mag. Ser. 6*
**41** (1921) 744.

31.

L. Truskinovsky, Equilibrium phase boundaries. *Soviet. Phys. Dokl.*
**27** (1982) 551-553.

32.

L. Truskinovsky, About the normal growth approximation in the dynamical theory of phase transitions. *Cont. Mech. Thermodyn.*
**6** (1993) 185-208.

33.

L. Truskinovsky and G. Zanzotto, Finite scale microstructures and metastability in one-dimensional elasticity. *Meccanica*
**30** (1995) 577-589.

34.

L. Truskinovsky and G. Zanzotto, Ericksen's bar revisited: Energy wiggles. *J. Mech. Phys. Solids*
**44**(8) (1996) 1371-1408.

35.

A. Vainchtein, T. Healey, P. Rosakis and L. Truskinovsky, The role of the spinodal in one-dimensional phase transitions microstructures. *Phys. D*
**115** (1998) 29-48.