[1]

Baker, A. B., ‘A simple solution to the Yale Shooting problem’, in R. Brachman, H. J. Levesque, and R. Reiter, editors, *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR)*, pages 11-20, Toronto, Kanada, 1989, Morgan Kaufmann.

[2]

Bibel, W., ‘Let's plan it deductively!’

*Artificial Intelligence* 103(1-2):183-208, 1998.

Google Scholar [3]

Diekert, V., and

G. Rozenberg, editors,

*The Book of Traces*, World Scientific, Singapore, 1995.

Google Scholar [4]

Green, C., ‘Theorem proving by resolution as a basis for question-answering systems’,

*Machine Intelligence*, 4:183-205, 1969.

Google Scholar [5]

HÖlldobler, S., and

J. Schneeberger, ‘A new deductive approach to planning’,

*New Generation Computing* 8:225-244, 1990.

Google Scholar [6]

McCarthy, J., and

P.J. Hayes, ‘Some philosophical problems from the standpoint of artificial intelligence’,

*Machine Intelligence* 4:463-502, 1969.

Google Scholar [7]

Reiter, R., ‘The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression’, in V. Lifschitz, editor, *Artificial Intelligence and Mathematical Theory of Computation*, pages 359-380, Academic Press, 1991.

[8]

Reiter, R., ‘Natural actions, concurrency and continuous time in the situation calculus’, in L.C. Aiello, J. Doyle, and S. Shapiro, editors, *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR)*, pages 2-13, Cambridge, MA, November 1996, Morgan Kaufmann.

[9]

Sandewall, E., ‘Combining logic and differential equations for describing real-world systems’, in R. Brachman, H. J. Levesque, and R. Reiter, editors, *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR)*, pages 412-420, Toronto, Kanada, 1989, Morgan Kaufmann.

[10]

Shanahan, M., ‘A circumscriptive calculus of events’,

*Artificial Intelligence* 77:249-284, 1995.

Google Scholar [11]

StÖrr, H.-P., and M. Thielscher, ‘A new equational foundation for the fluent calculus’, in J. Lloyd et al, editor, *Proceedings of the International Conference on Computational Logic (CL)*, volume 1861 of *LNAI*, pages 733-746, London (UK), July 2000, Springer.

[12]

Thielscher, M., ‘Ramification and causality’,

*Artificial Intelligence* 89(1-2):317-364, 1997.

Google Scholar [13]

Thielscher, M., ‘Fluent Calculus planning with continuous change’, *Electronic Transactions on Artificial Intelligence* 1999. (Submitted.) URL: http://www.ep.liu.se/ea/cis/1999/011/.

[14]

Thielscher, M., ‘From Situation Calculus to Fluent Calculus: State update axioms as a solution to the inferential frame problem’,

*Artificial Intelligence* 111(1-2):277-299, 1999.

Google Scholar [15]

Thielscher, M., ‘Nondeterministic actions in the fluent calculus: Disjunctive state update axioms’, in S. Hölldobler, editor, *Intellectics and Computational Logic*, pages 327-345, Kluwer Academic, 2000.

[16]

Thielscher, M., ‘Representing the knowledge of a robot’, in A. Cohn, F. Giunchiglia, and B. Selman, editors, *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR)*, pages 109-120, Breckenridge, CO, April 2000, Morgan Kaufmann.