Skip to main content
Log in

A Rigorous Derivation of a Linear Kinetic Equation of Fokker–Planck Type in the Limit of Grazing Collisions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We rigorously derive a linear kinetic equation of Fokker–Planck type for a 2-D Lorentz gas in which the obstacles are randomly distributed. Each obstacle of the Lorentz gas generates a potential ε α V(\(\left( {\frac{{\left| x \right|}}{\varepsilon }} \right)\)), where V is a smooth radially symmetric function with compact support, and α>0. The density of obstacles diverges as ε δ, where δ>0. We prove that when 0< α<1/8 and δ=2α+1, the probability density of a test particle converges as ε→0 to a solution of our kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Boldrighini, C. Bunimovitch, and Ya. G. Sinai, On the Boltzmann Equation for the Lorentz gas, J. Stat. Phys. 32:477-501 (1983).

    Google Scholar 

  2. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer Verlag, New York, 1994).

    Google Scholar 

  3. L. Desvillettes and M. Pulvirenti, The linear Boltzmann equation for long range forces: a derivation from particle systems, Math. Mod. Meth. Appl. Sci. 9:1123-1145 (1999).

    Google Scholar 

  4. L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations 25:179-259 (2000).

    Google Scholar 

  5. D. Dürr, S. Goldstein, and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model, Comm. Math. Phys. 113:209-230 (1987)

    Google Scholar 

  6. G. Gallavotti, Rigorous Theory of the Boltzmann Equation in the Lorentz Gas, Nota interna n. 358 (Istituto di Fisica, Universití di Roma, 1973).

  7. O. Lanford III, Time evolution of large classical systems, Lecture Notes in Physics, Vol. 38 (Springer Verlag, 1975), pp. 1-111.

  8. E. M. Lifschitz and L. P. Pitaevskii, Physical kinetics (Perg. Press., Oxford, 1981).

    Google Scholar 

  9. F. Poupaud and A. Vasseur, Classical and quantum transport in random media, preprint (2001), available at http://www-math.unice.fr/publis/poupaud-random.pdf; http://www-math.unice.fr/publis/poupaud-random.ps

  10. H. Spohn, The Lorentz flight process converges to a random flight process, Comm. Math. Phys. 60:277-290 (1978).

    Google Scholar 

  11. H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 52:569-615 (1980).

    Google Scholar 

  12. C. Villani, Contribution í l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas (PhD Thesis of the university Paris-IX Dauphine, 1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desvillettes, L., Ricci, V. A Rigorous Derivation of a Linear Kinetic Equation of Fokker–Planck Type in the Limit of Grazing Collisions. Journal of Statistical Physics 104, 1173–1189 (2001). https://doi.org/10.1023/A:1010461929872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010461929872

Navigation