, Volume 22, Issue 1, pp 5-49

Vertebrate tropomyosin: distribution, properties and function

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Tropomyosin (TM) is widely distributed in all cell types associated with actin as a fibrous molecule composed of two α-helical chains arranged as a coiled-coil. It is localised, polymerised end to end, along each of the two grooves of the F-actin filament providing structural stability and modulating the filament function. To accommodate the wide range of functions associated with actin filaments that occur in eucaryote cells TM exists in a large number isoforms, over 20 of which have been identified. These isoforms which are expressed by alternative promoters and alternative RNA processing of four genes, TPM1, 2, 3 and 4, all conform to a general pattern of structure. Their amino acid sequences consist of an integral number, six or seven in vertebrates, of quasiequivalent regions of about 40 residues that are considered to represent the actin-binding regions of the molecule. In addition to the variable regions a large part of the polypeptide chains of the TM isoforms, mainly centrally located and expressed by five exons, is invariant. Many of the isoforms are tissue and filament specific in their distribution implying that the exons expressed in them and the regions of the molecule they represent are of significance for the function of the filament system with which they are associated. In the case of muscle there is clear evidence that the TM moves its position on the F-actin filament during contraction and it is therefore considered to play an important part in the regulation of the process. It is uncertain how the role of TM in muscle compares to that in non-muscle systems and if its function in the former tissue is unique to muscle.