Conservation Genetics

, Volume 1, Issue 1, pp 17–32

Genetic distinction of pallid, shovelnose, and Alabama sturgeon: emerging species and the US Endangered Species Act


    • Department of Fisheries and Aquatic SciencesUniversity of Florida
  • Anna L. Bass
    • Department of Fisheries and Aquatic SciencesUniversity of Florida
  • Frank A. Chapman
    • Department of Fisheries and Aquatic SciencesUniversity of Florida
  • Brian W. Bowen
    • Department of Fisheries and Aquatic SciencesUniversity of Florida

DOI: 10.1023/A:1010121417487

Cite this article as:
Campton, D.E., Bass, A.L., Chapman, F.A. et al. Conservation Genetics (2000) 1: 17. doi:10.1023/A:1010121417487


The sturgeon genus Scaphirhynchus consists of threerecognized species. Pallid and shovelnose sturgeon (S. albusand S. platorynchus, respectively) are sympatric in theMissouri and lower Mississippi Rivers of the central United States. TheAlabama sturgeon (S. suttkusi) is endemic to the nearby MobileRiver drainage and is isolated geographically from the other twospecies. Pallid sturgeon and the extremely rare Alabama sturgeon arelisted as endangered under the US Endangered Species Act (ESA).In contrast, shovelnose sturgeon are relatively common and are notlisted. Despite these taxonomies and morphological evidence, somebiologists have questioned the genetic and taxonomic distinctions of thethree species, thus raising doubts concerning the validity of protectingpallid and Alabama sturgeon under the ESA. To investigate thesequestions, we compared a 436 base-pair sequence of the mitochondrial DNA(mtDNA) control region among the three species. We observed 16 mtDNAhaplotypes defined by 27 single base-pair substitutions (transitions)and one single base-pair insertion/deletion (indel) among 78individuals examined. The maximum sequence divergence among thosehaplotypes (2.06%) was less than values usually observed betweenfish species. However, Alabama sturgeon (n = 3) weredistinguished from the other two taxa (n = 75) by aunique base-pair substitution and haplotype, and pallid and shovelnosesturgeon at their northern range of natural sympatry (upper MissouriRiver) did not share any haplotypes. On the other hand, only frequencydifferences among shared haplotypes distinguished (P < 0.01)pallid and shovelnose sturgeon at their southern range of naturalsympatry (Atchafalaya River), and genetic distances between northern andsouthern localities for each species were nearly as large as thedistances between species. These latter results are consistent withseveral hypotheses, including reports (based on morphology) of putativenatural hybrids in the Atchafalaya River but not in the upper MissouriRiver. Overall, these mtDNA results indicate significant reproductiveisolation between pallid and shovelnose sturgeon in areas of naturalsympatry, and recent evolutionary divergence of Alabama sturgeon. ThesemtDNA results provide the first molecular genetic evidence fordistinguishing the three Scaphirhynchus species and, coupledwith morphological and biogeographic data, indicate that pallid andAlabama sturgeon should be evaluated as distinct species under theESA.

mtDNAScaphirhynchusspeciationsturgeonUS Endangered Species Act

Copyright information

© Kluwer Academic Publishers 2000