1.

Apsley, D.D. and Leschziner, M.A., A new low-Reynolds-number non-linear two-equation turbulence model for complex flows.

*Internat. J. Heat Fluid Flow*
**19** (1998) 209-222.

CrossRef2.

Baldwin, B.W. and Barth, T.A., One-equation turbulence transport model for high Reynolds number wall bounded flows. AIAA Paper 91-0610 (1991).

3.

Batten, P., Craft, T.J., Leschziner, M.A. and Loyau, H., Reynolds stress transport modelling for compressible aerodynamic flows.

*AIAA J.*
**37** (1999) 785-796.

ADS4.

Buice, C.U. and Eaton, J.K., Experimental investigation of flow through an asymmetric plane diffuser. Report TSD-107, Department of Mechanical Engineering, Stanford University (1997).

5.

Craft, T.J., Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows.

*Internat. J. Heat Fluid Flow*
**19** (1998) 541-548.

CrossRef6.

Craft, T.J. (ed.), *Proceedings of the 7th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling*, 28–29 May. UMIST, Manchester (1998).

7.

Craft, T.J., Launder, B.E. and Suga, K., Development and application of a cubic eddy-viscosity model of turbulence.

*Internat. J. Heat Fluid Flow*
**17** (1996) 108-115.

CrossRef8.

Craft, T.J., Launder, B.E. and Suga, K., Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model.

*Internat. J. Heat Fluid Flow*
**18** (1997) 15-28.

CrossRef9.

Durbin, P.A., Separated flow computations with the

*k*-

*ε*-

*v*
^{2} model.

*AIAA J.*
**33** (1995) 659-664.

ADS10.

Fatica, M., Kaltenbach, H.-J. and Mittal, R., Validation of large-eddy simulation in a plane asymmetric diffuser. In: *Annual Research Briefs*. Center for Turbulence Research, Stanford (1997) pp. 23-36.

11.

Gatski, T.B. and Speziale, C.G., On explicit algebraic stress models for complex turbulent flows,

*J. Fluid Mech.*
**254** (1993) 59-78.

MATHMathSciNetCrossRefADS12.

Gibson, M.M. and Launder, B.E., Ground effects on pressure fluctuations in the atmospheric boundary layer.

*J. Fluid Mech.*
**86** (1978) 491-511.

MATHCrossRefADS13.

Hanjalić, K., Jakirlić, S. and Hadžić, I., Expanding the limits of “equilibrium” second-moment turbulence closures.

*Fluid Dynam. Res.*
**20** (1997) 25-41.

CrossRef14.

Hanjalic, K. and Launder, B.E., Sensitising the dissipation equation to irrotational strains. *J. Fluids Engrg.*
**102** (1980) 34-40.

15.

Hellsten, A. and Rautaheimo, P., (ed.), *Proceedings of the 8th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling*, 17–18 June. Helsinki University of Technology (1999).

16.

Jakirlić, S. and Hanjalić, K., A second-moment closure for non-equilibrium and separating high and low Re number flows. In: Durst, F., Launder, B.E., Schmidt, F. and Whitelaw, J.H. (eds), *Proceedings 10th Symposium on Turbulent Shear Flows*. Pennsylvania State University (1995) pp. 23.25-23.30.

17.

Kalitzin, G., Gould, A.R.B. and Benton, J.J., Application of two-equation turbulence models in aircraft design. AIAA 96-0327 (1996).

18.

Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure.

*J. Fluid Mech.*
**68** (1975) 537-566.

MATHCrossRefADS19.

Launder, B.E. and Sharma, B.I., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc.

*Lett. Heat Mass Transfer*
**1** (1974) 131-138.

CrossRefADS20.

Launder, B.E. and Spalding, D.B., The numerical computation of turbulent flows.

*Comput Meth. Appl. Mech. Engrg.*
**3** (1974) 269-28.

MATHCrossRef21.

Leschziner, M.A. and Rodi, W., Calculation of annular and twin parallel jets using various discretisation schemes and turbulence-model variations.

*J. Fluids Engrg.*
**103** (1981) 352-360.

CrossRef22.

Lien, F.S. and Leschziner, M.A., A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure,

*J. Fluids Engrg.*
**115** (1993) 717-725.

CrossRef23.

Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications.

*AIAA J.*
**32** (1994) 1598-1605.

ADS24.

Obi, S., Aoki, K. and Masuda, S., Experimental and Computational study of turbulent separating flow in an asymmetric plane diffuser. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W., Suzuki, K. and Whitelaw, J.H. (eds), *Proceedings 9th Symposium on Turbulent Shear Flows*, Kyoto, Japan, August 16–18. (1993) Paper P305-1.

25.

Pope, S.B., 1975, A more general effective-viscosity hypothesis.

*J. Fluid Mech.*
**72** (1975) 331-340.

MATHCrossRefADS26.

Reynolds, W.C. and Kassinos, S.C., One point modelling of rapidly deformed homogeneous turbulence, Proceedings Osborne Reynolds Centenary Symposium, Manchester.

*Proc. Roy. Soc. London, A*
**451** (1994) 87-104.

MathSciNetADS27.

Spalart, P.R. and Almaras, S.R., A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439 (1992).

28.

Speziale, C.G., Sarkar, S. and Gatski, T.B., Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach,

*J. Fluid Mech.*
**227** (1991) 245-272.

MATHCrossRefADS29.

Speziale, C.G. and Xu, X-H., Towards the development of second-order closure models for nonequilibrium turbulent flows.

*Internat. J. Heat Fluid Flow*
**17** (1996) 238-244.

CrossRef30.

Wilcox, D.C., Reassessment of the scale-determining equation for advanced turbulence models.

*AIAA J.*
**26** (1988) 1299-1310.

MATHMathSciNetADS31.

Wilcox, D.C., Multiscale model for turbulent flows.

*AIAA J.*
**26** (1988) 1311-1320.

MathSciNetADS32.

Wilcox, D.C., Simulation of transition with a two-equation turbulence model.

*AIAA J.*
**32** (1994) 247-255.

MATHCrossRefADS