Nutrient Cycling in Agroecosystems

, Volume 58, Issue 1, pp 259–276

Modeling Trace Gas Emissions from Agricultural Ecosystems

Article

DOI: 10.1023/A:1009859006242

Cite this article as:
Li, C. Nutrient Cycling in Agroecosystems (2000) 58: 259. doi:10.1023/A:1009859006242

Abstract

A computer simulation model was developed for predicting trace gas emissions from agricultural ecosystems. The denitrification-decomposition (DNDC) model consists of two components. The first component, consisting of the soil climate, crop growth, and decomposition submodels, predicts soil temperature, moisture, pH, Eh, and substrate concentration profiles based on ecological drivers (e.g., climate, soil, vegetation, and anthropogenic activity). The second component, consisting of the nitrification, denitrification, and fermentation submodels, predicts NH3, NO, N2O, and CH4 fluxes based on the soil environmental variables. Classical laws of physics, chemistry, or biology or empirical equations generated from laboratory observations were used in the model to parameterize each specific reaction. The entire model links trace gas emissions to basic ecological drivers. Through validation against data sets of NO, N2O, CH4, and NH3 emissions measured at four agricultural sites, the model showed its ability to capture patterns and magnitudes of trace gas emissions.

agroecosystemtrace gasmodeling

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.S. Li
    • 1
  1. 1.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA