1.

A. Abderrahmane and N. Beldiceanu. (1992). Extending CHIP in order to solve complex scheduling and placement problems. *Premières Journées Francophones sur la Programation en Logique*.

2.

M. Bartusch, R. H. Möhring, and F. J. Radermacher. (1988). Scheduling project networks with resource constraints and time windows.

*Annals of Operations Research*, 16: 201-240.

Google Scholar3.

H. Beringer and B. de Backer. (1993). Satisfiability of boolean formulas over linear constraints. In *IJCAI-93*, pp. 296-301, Chambéry, France.

4.

E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. (1984). Approximation algorithms for bin-packing-an updated survey. In G. Ausiello, M. Lucertini, and P. Serafini, editors, *Algorithm Design for Computer System Design*, pp. 49-106. Springer-Verlag.

5.

A. Davenport. (1998). Managing uncertainty in scheduling: a survey. Working Draft.

6.

R. Dechter and A. Dechter. (1988). Belief maintenance in dynamic constraint networks. In *Proceedings of AAAI-88*, pp. 37-42.

7.

R. Dechter and J. Pearl. (1988). Network-based heuristics for constraint satisfaction problems. *Artificial Intelligence*, 34.

8.

R. Dechter, I. Meiri, and J. Pearl. (1991). Temporal constraint networks.

*Artificial Intelligence*, 49: 61-95.

Google Scholar9.

A. El-Kholy and B. Richards. (1996). Temporal and resource reasoning in planning: The *parc* PLAN approach. In *Proceedings of the 11th European Conference on Artificial Intelligence, ECAI-96*, pp. 614-618, Budapest, Hungary.

10.

A. O. El-Kholy. (1996). *Resource Feasibility in Planning*. Ph.D. thesis, Imperial College, University of London.

11.

H. El Sakkout, T. Richards, and M.Wallace. (1997). Unimodular probing for minimal perturbance in dynamic resource feasibility problems. In *Proceedings of the CP97 workshop on Dynamic Constraint Satisfaction*.

12.

H. El Sakkout, T. Richards, and M. Wallace. (1998). Minimal perturbation in dynamic scheduling. In *Proceedings of the 13th European Conference on Artificial Intelligence, ECAI-98*, Brighton, UK, 1998.

13.

M. S. Fox. (1987). *Constraint-directed search: a case study of job-shop scheduling*. Morgan Kaufmann Publishers Inc.

14.

S. French. (1982).

*Sequencing and Scheduling: An introduction to the Mathematics of the Job-Shop*. Ellis Horwood, England.

Google Scholar15.

M. R. Garey and D. S. Johnson. (1979). *Computers and Intractability: A Guide to the Theory of NPCompleteness*. Bell Telephone Laboratories, Inc.

16.

R. S. Garfinkel and G. L. Nemhauser. (1972). *Integer Programming*. John Wiley & Sons.

17.

I. Heller and C.B.Tompkins. (1956). An extension of a theorem of Dantzig's. In Kuhn and Tucker, editors, *Linear Inequalities and Related Systems*, pp. 247-254. Princeton University Press.

18.

D.W. Hildum. (1994).

*Flexibility in a Knowledge-Based System for Solving Dynamic Resource-Constrained Scheduling Problems*. Ph.D. thesis, Dept. of Computer Science, University of Massachusetts, Amherst. 19. J. N. Hooker and M. A. Osorio. (1996). Mixed logical/linear programming.

*Discrete Applied Mathematics (to appear)*. Electronic copy available from first author's home page:

<http://www.gsia.cmu.edu/afs/andrew.cmu.edu/gsia/jh38/papers.html>.

Google Scholar20.

N. Karmarkar. (1984). A new polynomial-time algrithm for linear programming.

*Combinatorica*, 4(4): 373-395.

Google Scholar21.

L. G. Khachian. (1979).Apolynomial algorithm in linear programming.

*Soviet Math. Dokl.*, 20(1): 191-194.

Google Scholar22.

C. Le Pape, P. Couronné, D. Vergamini, and V. Gosselin. (1994). Time-versus-capacity compromises in project scheduling. In *Proceedings of the 13th Workshop of the UK Planning and Scheduling SIG*, Glasgow, Scotland.

23.

V. J. Leon, S. D. Wu, and R. H. Storer. (1994). Robustness measures and robust scheduling for job shop.

*IIE Transactions*, 26(5): 32-43.

Google Scholar24.

Olivier Lhomme. (1993). Consistency techniques for numeric csps. In *Proceedings of the 13th International Joint Conference on Artificial Intelligence, IJCAI-93*, pp. 232-238, Chambéry, France.

25.

V. Liatsos. (1998). Short term scheduling. Presentation at the DIMACS Workshop on Constraint Programming and Large-Scale Discrete Optimization, Rutgers University, NJ.

26.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. (1992). Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems.

*Artificial Intelligence*, 58: 161-205.

Google Scholar27.

W. Nuijten and E. Aarts. (1994). Constraint satisfaction for multiple capacitated job shop scheduling. In *Proceedings of the 11th European Conference on Artificial Intelligence, ECAI-94*. JohnWiley & Sons, Ltd.

28.

Wim Nuijten. (1994). *Time and Resource Constrained Scheduling: A constraint satisfaction approach*. PhD thesis, Eindhoven University of Technology.

29.

D. Pothos. (1997). A constraint-based approach to the british airways schedule re-timing problem. Technical Report 97/04-01, IC-Parc, Imperial College.

30.

P. W. Purdom, Jr. and G. N. Haven. (1997). Probe order backtracking.

*Siam Journal of Computing*, 26: 456-483.

Google Scholar31.

M. Queyranne and Y. Wang. (1991). Single-machine scheduling polyhedra with precedence constraints. *Mathematics of Operations Research*, pp. 1-20.

32.

N. Sadeh. (1994). Micro-opportunistic scheduling: The micro-boss factory scheduler. In M. Zweben and M. Fox, editors, *Intelligent Scheduling*, chapter 4, pp. 99-136. Morgan Kaufman.

33.

G. Verfaillie and T. Schiex. (1994). Solution reuse in dynamic constraint satisfaction problems. In *AAAI-94*, pp. 307-312, Seattle, WA.

34.

M. Yokoo. (1994). Weak-commitment search for solving constraint satisfaction problems. In *AAAI-94*, pp. 313-318, Seattle, WA.