1.

G.E. Andrews, “Connection coefficient problems and partitions,” in *Proc*.*Symp*.*Pure Math*. (D. Ray-Chaudhuri, ed.), Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 1–24.

2.

W.N. Bailey, “Some identities in combinatory analysis,” *Proc*.*London Math*.*Soc*. **49**(2) (1947), 421–435.

3.

G. Bhatnagar, “Inverse relations, generalized bibasic series and their U_{n} extensions,” Ph.D. thesis, The Ohio State University, 1995.

4.

G. Bhatnagar, “D_{n} basic hypergeometric series,” *The Ramanujan J*. **3** (1999), 175–203.

5.

G. Bhatnagar and S.C. Milne, “Generalized bibasic hypergeometric series and their U_{n} extensions,” *Adv*. *in Math*. **131** (1997), 188–252.

6.

G. Bhatnagar and M. Schlosser, “C_{n} and D_{n} very-well-poised 10Á9 transformations,” *Constr*.*Approx*. **14** (1998), 531–567.

7.

D.M. Bressoud, “A matrix inverse,” *Proc*.*Amer*.*Math*.*Soc*. **88** (1983), 446–448.

8.

L. Carlitz, “Some inverse relations,” *Duke Math*.*J*. **40** (1973), 893–901.

9.

L. Carlitz, “Some expansions and convolution formulas related to MacMahon's Master Theorem,” *SIAM J*. *Appl*.*Math*. **8** (1977), 320–336.

10.

W. Chu, “Some multifold reciprocal transformations with applications to series expansions,” *Europ*.*J*.*Comb*. **12** (1991), 1–8.

11.

W. Chu, “Inversion techniques and combinatorial identities—Jackson's q-analogue of the Dougall-Dixon theorem and the dual formulae,” *Compositio Math*. **95** (1995), 43–68.

12.

J.F. van Diejen, “On certain multiple Bailey, Rogers and Dougall type summation formulas,” *Publ*.*RIMS, Kyoto Univ*. **33** (1997), 483–508.

13.

L. Euler, *De serie Lambertiana plurimisque eius insignibus proprietatibus*, reprinted in *Opera Omnia* Ser. I 6, Teubner, Leibzig, 1921, pp. 350–369.

14.

G. Gasper, “Summation, transformation and expansion formulas for bibasic series,” *Trans*.*Amer*.*Soc*. **312** (1989), 257–278.

15.

G. Gasper and M. Rahman, “An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulae,” *Canad*.*J*.*Math*. **42** (1990a), 1–27.

16.

G. Gasper and M. Rahman, *Basic Hypergeometric Series*, Cambridge University Press, Cambridge, 1990(b).

17.

I.M. Gessel and D. Stanton, “Application of q-Lagrange inversion to basic hypergeometric series,” *Trans*. *Amer*.*Math*.*Soc*. **277** (1983), 173–203.

18.

I.M. Gessel and D. Stanton, “Another family of *q*-Lagrange inversion formulas,” *Rocky Mountain J*.*Math*. **16** (1986), 373–384.

19.

H.W. Gould, “Final analysis of Vandermonde's convolution,” *Amer*.*Math*.*Monthly*
**64** (1957), 409–415.

20.

H.W. Gould, *Combinatorial Identities*, Morgantown, 1972.

21.

H.W. Gould and L.C. Hsu, “Some new inverse series relations,” *Duke Math*.*J*. **40** (1973), 885–891.

22.

R.A. Gustafson, “A Whipple's transformation for hypergeometric series in U_{n} and multivariable orthogonal polynomials,” *SIAM J*.*Math*.*Anal*. **18** (1987), 495–530.

23.

R.A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras,” in Ramanujan International Symposium on Analysis (Dec. 26th to 28th, 1987, Pune, India), (N.K. Thakare, ed.) (1989), 187–224.

24.

W.J. Holman III, “Summation theorems for hypergeometric series in U_{n},” *SIAM J*.*Math*.*Anal*. **II** (1980), 523–532.

25.

J. Horn, “Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen,” *Math*. *Ann*. **34** (1889), 544–600.

26.

F.H. Jackson, “A _{q}-generalization of Abel's series,” *Rend*.*Circ*.*Math*.*Palermo*
**29** (1910), 340–346.

27.

W.P. Johnson, “_{q}-Extensions of identities of Abel-Rothe type,” *Discrete Math*. **159** (1996), 161–177.

28.

P.W. Karlsson and H.M. Srivastava, *Multiple Gaussian Hypergeometric Series*, Halsted Press, J. Wiley & Sons, New York, 1985.

29.

C. Krattenthaler, “A new matrix inverse,” *Proc*.*Amer*.*Math*.*Soc*. **124** (1996), 47–59.

30.

C. Krattenthaler and M. Schlosser, “A new multidimensional matrix inverse with applications to multiple _{q}-series,” *Discrete Math*. **204** (1999), 249–279.

31.

G.M. Lilly and S.C. Milne, “The C_{l} Bailey Transform and Bailey Lemma,” *Constr*.*Approx*. **9** (1993), 473–500.

32.

S.C. Milne, “A _{q}-analog of hypergeometric series very-well-poised in *SU*
_{(n)} and invariant *G*-functions,” *Adv*. *in Math*. **58** (1985a), 1–60.

33.

S.C. Milne, “A _{q}-analog of the _{5}
*F*
_{4}(1) summation theorem for hypergeometric series well-poised in *SU*(*n*),” *Adv*.*in Math*. **57** (1985b), 14–33.

34.

S.C. Milne, “An elementary proof of the Macdonald identities for *A*._{ℓ}^{(1)},” *Adv*.*in Math*. **57** (1985c), 34–70.

35.

S.C. Milne, “A _{q}-analog of the Gauss summation theorem for hypergeometric series in *U*(*n*),” *Adv*.*in Math*. **72** (1988), 59–131.

36.

S.C. Milne, “A *q*-analog of the balanced _{3}
*F*
_{2} summation theorem for hypergeometric series in *U*(*n*),” *Adv*.*in Math*. **99** (1993), 162–237.

37.

S.C. Milne, “Balanced _{3}
*ø*
_{2} summation theorems for *U*(*n*) basic hypergeometric series,” *Adv*.*in Math*. **131** (1997), 93–187.

38.

S.C. Milne and G.M. Lilly, “Consequences of the *A*
_{l} and *C*
_{l} Bailey Transform and Bailey Lemma,” *Discrete Math*. **139** (1995), 319–346.

39.

M. Rahman, “Some cubic summation formulas for basic hypergeometric series,” *Utilitas Math*. **36** (1989), 161–172.

40.

M. Rahman, “Some quadratic and cubic summation formulas for basic hypergeometric series,” *Can*.*J*.*Math*. **45** (1993), 394–411.

41.

J. Riordan, *Combinatorial Identities*, J. Wiley, New York, 1968.

42.

M. Schlosser, “Multidimensional matrix inversions and *A*
_{r} and *D*
_{r} basic hypergeometric series,” *The Ramanujan J*. **1** (1997), 243–274.

43.

D. Stanton, “An elementary approach to the Macdonald identities,” in *q-Series and Partitions* (D. Stanton, ed.), The IMA volumes in mathematics and its applications, Springer-Verlag, Vol. 18, pp. 139–150, 1989.

44.

V. Strehl, “Identities of Rothe-Abel-Schläfli-Hurwitz-type,” *Discrete Math*. **99** (1992), 321–340.

45.

Z.X. Wang and D.R. Guo, *Special functions*, World Scientific, Singapore, 1989.