, Volume 148, Issue 1, pp 61-69

The influence of hybridization on epidermal properties of birch species and the consequences for palaeoclimatic interpretations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Fennoscandian birch population primarily consists of Betula nana, B. pendula and B. pubescens ssp. czerepanovii, the Mountain birch. Frequent hybridization between the Mountain birch and B. nana generates a wide range of genotypic and phenotypic plasticity in the subarctic birch zone of Fennoscandia. Phases of subarctic conditions prevailed during the Late Glacial in large parts of NW Europe, and palynological as well as macrofossil analysis provide some evidence for the occurrence of birch hybrids during these intervals. Leaves from genetically controlled specimens of Betula pendula, B. pubescens ssp. czerepanovii, B. nana and the hybrids B. pubescens ssp. czerepanovii × nana and B. nana × pubescens ssp. czerepanovii are investigated for their specific characteristics of the epidermis morphology. Frequency and size of epidermal cells and stomata reveal a close affinity of both hybrids to B. nana and allow a differentiation of the intermediate forms between B. nana and the Mountain birch. With respect to palaeoatmospheric CO2 reconstructions based on stomatal index, epidermal analysis shows that a possible occurrence of hybrids in fossil leaf assemblages has no profound consequences for combined species records. However, the significant differences observed in B. nana demand the separation of this species. A comparison of the cuticle properties of B. pendula and B. pubescens from Finnish Lapland and leaf material from The Netherlands reveals a divergence of the stomatal index that may be due to differences in day light length.