Aizerman, M.A., Braverman, E.M. and Rozoner, L.I. Theoretical foundations of the potential function method in pattern recognition learning. *Automation and Remote Control*, 25:821–837, 1964.

Anthony, M. and Biggs, N. Pac learning and neural networks. In *The Handbook of Brain Theory and Neural Networks*, pages 694–697, 1995.

Bennett, K.P. and Bredensteiner, E. Geometry in learning. In *Geometry at Work*, page to appear, Washington, D.C., 1998. Mathematical Association of America.

Bishop, C.M. *Neural Networks for Pattern Recognition*. Clarendon Press, Oxford, 1995.

Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V. and Vetter, T. Comparison of view–based object recognition algorithms using realistic 3d models. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, *Artificial Neural Networks—ICANN’96*, pages 251–256, Berlin, 1996. Springer Lecture Notes in Computer Science, Vol. 1112.

Boser, B.E., Guyon, I.M. and Vapnik, V. A training algorithm for optimal margin classifiers. In *Fifth Annual Workshop on Computational Learning Theory*, Pittsburgh, 1992. ACM.

Bunch, J.R. and Kaufman, L. Some stable methods for calculating inertia and solving symmetric linear systems. *Mathematics of computation*, 31(137):163–179, 1977.

Bunch, J.R. and Kaufman, L. A computational method for the indefinite quadratic programming problem. *Linear Algebra and its Applications*, 34:341–370, 1980.

Burges, C.J.C. and Schölkopf, B. Improving the accuracy and speed of support vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, *Advances in Neural Information Processing Systems 9*, pages 375–381, Cambridge, MA, 1997. MIT Press.

Burges, C.J.C. Simplified support vector decision rules. In Lorenza Saitta, editor, *Proceedings of the Thirteenth International Conference on Machine Learning*, pages 71–77, Bari, Italy, 1996. Morgan Kaufman.

Burges, C.J.C. Geometry and invariance in kernel based methods. In *Advances in Kernel Methods-Support Vector Learning,*Bernhard Schölkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA, 1998 (to appear).

Burges, C.J.C., Knirsch, P. and Haratsch, R. Support vector web page: http://svm.research.bell-labs.com. Technical report, Lucent Technologies, 1996.

Cortes, C. and Vapnik, V. Support vector networks. *Machine Learning*, 20:273–297, 1995.

Courant, R. and Hilbert, D. *Methods of Mathematical Physics*. Interscience, 1953.

Devroye, L., Györfi, L. and Lugosi, G. *A Probabilistic Theory of Pattern Recognition*. Springer Verlag, Applications of Mathematics Vol. 31, 1996.

Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V. Support vector regression machines. *Advances in Neural Information Processing Systems*, 9:155–161, 1997.

Fletcher, R. *Practical Methods of Optimization*. John Wiley and Sons, Inc., 2nd edition, 1987.

Geman, S. and Bienenstock, E. Neural networks and the bias / variance dilemma. *Neural Computation*, 4:1–58, 1992.

Girosi, F. An equivalence between sparse approximation and support vector machines. *Neural Computation (to appear); CBCL AI Memo 1606, MIT*, 1998.

Guyon, I., Vapnik, V., Boser, B., Bottou, L. and Solla. S.A. Structural risk minimization for character recognition. *Advances in Neural Information Processing Systems*, 4:471–479, 1992.

Halmos, P.R. *A Hilbert Space Problem Book*. D. Van Nostrand Company, Inc., 1967.

Horn, R.A. and Johnson, C.R. *Matrix Analysis*. Cambridge University Press, 1985.

Joachims, T. Text categorization with support vector machines. Technical report, LS VIII Number 23, University of Dortmund, 1997. ftp://ftp-ai.informatik.uni-dortmund.de/pub/Reports/report23.ps.Z.

Kaufman, L. Solving the quadratic programming problem arising in support vector classification. In *Advances in Kernel Methods-Support Vector Learning,*Bernhard Schölkopf, Chrisopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA, 1998 (to appear).

Kolmogorov, A.N. and Fomin, S.V. *Introductory Real Analysis*. Prentice-Hall, Inc., 1970.

Mangarasian, O.L. *Nonlinear Programming*. McGraw Hill, New York, 1969.

McCormick, G.P. *Non Linear Programming: Theory, Algorithms and Applications*. John Wiley and Sons, Inc., 1983.

Montgomery, D.C. and Peck, E.A. *Introduction to Linear Regression Analysis*. John Wiley and Sons, Inc., 2nd edition, 1992.

Moré and Wright. *Optimization Guide*. SIAM, 1993.

Moré, J.J. and Toraldo, G. On the solution of large quadratic programming problems with bound constraints. *SIAM J. Optimization*, 1(1):93–113, 1991.

Mukherjee, S., Osuna, E. and Girosi, F. Nonlinear prediction of chaotic time series using a support vector machine. In *Proceedings of the IEEE Workshop on Neural Networks for Signal Processing 7*, pages 511–519, Amelia Island, FL, 1997.

Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J. and Vapnik, V. Predicting time series with support vector machines. In *Proceedings, International Conference on Artificial Neural Networks*, page 999. Springer Lecture Notes in Computer Science, 1997.

Osuna, E., Freund, R. and Girosi, F. An improved training algorithm for support vector machines. In *Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, Eds. J. Principe, L. Giles, N. Morgan, E. Wilson*, pages 276–285, Amelia Island, FL, 1997.

Osuna, E., Freund, R. and Girosi, F. Training support vector machines: an application to face detection. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 130–136, 1997.

Osuna, E. and Girosi. F. Reducing the run-time complexity of support vector machines. In *International Conference on Pattern Recognition (submitted)*, 1998.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vettering, W.T. *Numerical recipes in C: the art of scientific computing*. Cambridge University Press, 2nd edition, 1992.

Schmidt, M. Identifying speaker with support vector networks. In *Interface ’96 Proceedings*, Sydney, 1996.

Schölkopf, B. *Support Vector Learning*. R. Oldenbourg Verlag, Munich, 1997.

Schölkopf, B., Burges, C. and Vapnik, V. Extracting support data for a given task. In U. M. Fayyad and R. Uthurusamy, editors, *Proceedings, First International Conference on Knowledge Discovery & Data Mining*. AAAI Press, Menlo Park, CA, 1995.

Schölkopf, B., Burges, C. and Vapnik, V. Incorporating invariances in support vector learning machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, *Artificial Neural Networks — ICANN’96*, pages 47–52, Berlin, 1996. Springer Lecture Notes in Computer Science, Vol. 1112.

Schölkopf, B., Simard, P., Smola, A. and Vapnik, V. Prior knowledge in support vector kernels. In M. Jordan, M. Kearns, and S. Solla, editors, *Advances in Neural Information Processing Systems 10*, Cambridge, MA, 1998. MIT Press. In press.

Schölkopf, B., Smola, A. and Müller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, 1998. In press.

Schölkopf, B., Smola, A., Müller, K.-R., Burges, C.J.C. and Vapnik, V. Support vector methods in learning and feature extraction. In *Ninth Australian Congress on Neural Networks (to appear)*, 1998.

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik. V. Comparing support vector machines with gaussian kernels to radial basis function classifiers. *IEEE Trans. Sign. Processing*, 45:2758–2765, 1997.

Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C. and Anthony, M. A framework for structural risk minimization. In *Proceedings, 9th Annual Conference on Computational Learning Theory*, pages 68–76, 1996.

Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C. and Anthony, M. Structural risk minimization over data-dependent hierarchies. Technical report, NeuroCOLT Technical Report NC-TR-96-053, 1996.

Smola, A. and Schölkopf, B. On a kernel-based method for pattern recognition, regression, approximation and operator inversion. *Algorithmica (to appear)*, 1998.

Smola, A., Schölkopf, B. and Müller, K.-R. General cost functions for support vector regression. In *Ninth Australian Congress on Neural Networks (to appear)*, 1998.

Smola, A.J., Schölkopf, B. and Müller, K.-R. The connection between regularization operators and support vector kernels. *Neural Networks (to appear)*, 1998.

Stitson, M.O., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C. and Weston, J. Support vector anova decomposition. Technical report, Royal Holloway College, Report number CSD-TR-97-22, 1997.

Strang, G.T. *Introduction to Applied Mathematics*. Wellesley-Cambridge Press, 1986.

Vanderbei, R.J. Interior point methods: Algorithms and formulations. *ORSA J. Computing*, 6(1):32–34, 1994.

Vanderbei, R.J. LOQO: An interior point code for quadratic programming. Technical report, Program in Statistics & Operations Research, Princeton University, 1994.

Vapnik, V. *Estimation of Dependences Based on Empirical Data [in Russian]*. Nauka, Moscow, 1979. (English translation: Springer Verlag, New York, 1982).

Vapnik, V. *The Nature of Statistical Learning Theory*. Springer-Verlag, New York, 1995.

Vapnik, V. *Statistical Learning Theory*. John Wiley and Sons, Inc., New York, in preparation.

Vapnik, V., Golowich, S. and Smola, A. Support vector method for function approximation, regression estimation, and signal processing. *Advances in Neural Information Processing Systems*, 9:281–287, 1996.

G. Wahba. Support vector machines, reproducing kernel hilbert spaces and the randomized gacv. In *Advances in Kernel Methods-Support Vector Learning*, Bernhard Schölkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA, 1998 (to appear).

Weston, J., Gammerman, A., Stitson, M.O., Vapnik, V., Vovk, V., and Watkins, C. Density estimation using support vector machines. Technical report, Royal Holloway College, Report number CSD-TR-97-23, 1997.