J.D. Angrist, G.W. Imbens, and Rubin D.B. (1996), ‘Identification of causal effects using instrumental variables (with comments).’

*Journal of the American Statistical Association*,

**91(434)**:444–472, June.

CrossRefA. Balke and J. Pearl (1994), ‘Counterfactual probabilities: Computation methods, bounds, and applications’, in: R.L. de Mantaras and D. Poole (eds.), *Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence*, pages 11–18, San Francisco, Morgan Kaufmann.

A. Balke and J. Pearl (1995), ‘Counterfactuals and policy analysis in structural models’ in: P. Besnard and S. Hanks, (eds.), *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence*, pages 11–18, San Francisco, Morgan Kaufmann.

R.J. Bowden and D.A. Turkington (1984), *Instrumental Variables*. Cambridge University Press, Cambridge, MA.

A.P. Dawid (1997), *Causal inference without counterfactuals*. Technical Report, Department of Statistical Science, University College London, UK.

P.J. Dhrymcs (1970), *Economctrics*. Springer-Verlag, New York.

R.F. Engle, D.F. Hendry, and J.F. Richard (1983), ‘Exogeneity’.

*Econometrical*,

**51(2)**:277–304, March.

CrossRefR. Fagin, J.M. Halpert, Y. Moses, and M.Y. Vardi (1995), *Reasoning About Knowledge*. MIT Press, Cambridge, MA.

F.M. Fisher (1966), *The Identification Problem in Econometrics*. McGraw-Hill, New York.

F.M. Fisher (1970), ‘A correspondence principle for simultaneous equation models’.

*Econometrica*,

**38**:73–92.

CrossRefD. Galles and J. Pearl (1997a) *An axiomatic characterization of causal counterfactuals*. Technical Report R-250-L, Computer Science Department, University of California, Los Angeles, March 1997. Prepared for *Foundations of Science*, Kluwer Academic Publishers.

D. Galles and J. Pearl (1997b), ‘Axioms of causal relevance’,

*Artificial Intelligence*,

**97(1–2)**:9–43.

CrossRefA. Gibbard and L. Harper (1981), ‘Counterfactuals and two kinds of expected utility’, in: W.L. Harper, R. Stalnaker, and G. Pearce, (eds.), *Ifs*. D. Reidel, Dordrecht: Holland.

M.L. Ginsberg and D.E. Smith (1987), ‘Reasoning about action I: A possible worlds approach’, In Frank M. Brown, (ed.), *The Frame Problem in Artificial Intelligence*, pages 233–258. Morgan Kaufmann, Los Altos, CA.

Arthur S. Goldberger (1992), ‘Models of substance [comment on N. Wermuth, “On block-recursive linear regression equations”]’. *Brazilian Journal of Probability and Statistics*, **6**:1–56.

J. Halpern (1997), *Axiomatizing causal structures*. Unpublished report, Cornell University, May.

D. Heckerman and R. Shachter (1995), ‘A definition and graphical representation of causality’, in: P. Besnard and S. Hanks, (eds.), *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence*, pages 262–273, San Francisco, Morgan Kaufmann.

David F. Hendry (1995), *Dynamic Econometrics*. Oxford University Press, New York.

P. W. Holland (1986), ‘Statistics and causal inference (with discussion)’.

*Journal of the American Statistical Association*,

**81(396)**:945–970.

CrossRefP.W. Holland (1988), ‘Causal inference, path analysis, and recursive structural equations models.’ In C. Clogg, editor, *Sociological Methodology*, pages 449–484. American Sociological Association, Washington, D.C.

H. Katsuno and A.O. Mendelzon (1991), ‘On the difference between updating a knowledge base and revising it.’ In *Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference*, pages 387–394. Boston, MA.

T.C. Koopmans (1950), ‘When is an equation system complete for statistical purposes?’ In T.C. Koopmans, (ed.), *Statistical Inference in Dynamic Economic Models*, Cowles Commission, Monograph 10. Wiley, New York. Reprinted in D.F. Hendry and M.S. Morgan (Eds.), *The Foundations of Econometric Analysis*, Cambridge University Press, 527–537, 1995.

E. Leamer (1985), ‘Vector autoregression for causal inference?’

*Carnegie-Rochester Conference Series on Public Policy*,

**22**:255–304.

CrossRefD. Lewis (1973a), ‘Causation.’

*Journal of Philosophy*,

**70**:556–567.

CrossRefD. Lewis (1973b), *Counterfactuals*. Harvard University Press, Cambridge, MA.

D. Lewis (1981), ‘Counterfactuals and comparative possibility’, in: W.L. Harper, R. Stalnaker, and G. Pearce, (eds.), *Ifs*. D. Reidel, Dordrecht, Holland.

C.F. Manski (1990), ‘Nonparametric bounds on treatment effects.’ *American Economic Review, Papers and Proceedings*, **80**:319–323.

J.S. Meditch (1969), *Stochastic Optimal Linear Estimation and Control*. McGraw-Hill, New York.

J. Pearl (1988), *Probabilistic Reasoning in Intelligent Systems*. Morgan Kaufmann San Mateo, CA. (Revised 2nd printing, 1992).

J. Pearl (1994), ‘A probabilistic calculus of actions’, in: R.L. de Mantaras and D. Poole, (eds.), *Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence*, pages 454–462, San Francisco, Morgan Kaufmann.

J. Pearl (1995a), ‘Causal diagrams for empirical research (with discussion).

*Biometrika*,

**82(4)**:669–709.

CrossRefJ. Pearl (1995b), On the testability of causal models with latent and instrumental variables.’ In P. Besnard and S. Hanks, (eds), *Uncertainty in Artificial Intelligence 11*, pages 435–443. Morgan Kaufmann.

J. Pearl (1996), ‘Structural and probabilistic causality.’

*Psychology of Learning and Motivation*, 34:393–435.

CrossRefJ. Pearl (1997a), “The new challenge: From a century of statistics to an age of causation.’ *Computing Science and Statistics*, **29(2)**:415–423.

J. Pearl (1997b), ‘On the identification of nonparametric structural models.’ In M. Berkane, (ed.), *Latent Variable Modeling with Application to Causality*, pages 29–68. Springer-Verlag.

J. Pearl (1998a), *Graphs, causality, and structural equation models*. Technical Report R-253, Department of Computer Science, University of California, Los Angeles. To appear in *Sociological Methods and Research*, Special Issue on Causality.

J. Pearl (1998b), *Why there is no statistical test for confounding, why many think there is, and why they are almost right*. Technical Report R-256, Department of Computer Science, University of California, Los Angeles.

J.W. Pratt and R. Schlaifer (1988), ‘On the interpretation and observation of laws.’

*Journal of Econometrics*,

**39**:23–52.

CrossRefJ.F. Richard (1980), ‘Models with several regimes and charges in exogeneity.’

*The Review of Economic Studies*,

**47**:1–20.

CrossRefJ. Robins (1986), ‘A new approach to causal inference in mortality studies with a sustained exposure period — applications to control of the healthy workers survivor effect.’

*Mathematical Modeling*,

**7**:1393–512.

CrossRefJ. Robins (1987), ‘Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods — application to control of the healthy worker survivor effect”.’

*Computers and Mathematics, with Applications*.,

**14**:923–45.

CrossRefJ.M. Robins (1995), ‘Discussion of “Causal diagrams for empirical research” by J. Pearl.’

*Biometrika*,

**82(4)**:695–698.

CrossRefP. Rosenbaum and D. Rubin (1983), ‘The central role of propensity score in observational studies for causal effects.’

*Biometrika*,

**70**:41–55.

CrossRefD.B. Rubin (1974), ‘Estimating causal effects of treatments in randomized and nonrandomized studies.’

*Journal of Educational Psychology*,

**66**:688–701.

CrossRefH.A. Simon and N. Rescher (1966), ‘Cause and counterfactual.’

*Philosophy and Science*,

**33**:323–340.

CrossRefM.E. Sobel (1990), ‘Effect analysis and causation in linear structural equation models.’

*Psychometrika*,

**55**:495–515.

CrossRefP. Spirtes, C. Glymour, and R. Schienes (1993), *Causation, Prediction, and Search*. Springer-Verlag, New York.

R.H. Strotz and O.A. Wold (1960), ‘Recursive versus nonrecursive systems: At attempt at synthesis.’

*Econometrica*,

**28**:417–427.

CrossRefM. Winslett (1988), ‘Reasoning about action using a possible worlds approach. In *Proceedings of the Seventh American Association for Artificial Intelligenc Conference*, pages 89–93.