Skip to main content
Log in

An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

This is the first successful report of the recovery of morphologically normal transgenic sugarcane plants from co-cultivation of calluses with Agrobacterium tumefaciens. Transformation frequencies (total of transgenic plants/number of cell clusters) were between 9.4 × 10−3 and 1.15 × 10−2. In our experiments, both LBA4404 (pTOK233) and EHA101 (pMTCA3IG), carrying a super-binary vector or supervirulent strain, respectively, were successful for sugarcane transformation. We found that three main factors: (1) the use of young regenerable calluses as target explants; (2) induction and/or improvement of the A. tumefaciens virulence system with sugarcane cell cultures and (3) pre-induction of organogenesis or somatic-embryogenesis-like sexual embryos, seem to be crucial in order to increase the cells competence for T-DNA transfer process. Patterns generated by Southern hybridization confirmed that T-DNAs were randomly integrated into sugarcane genome without th e persistence of A. tumefaciens in the transgenic plants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arencibia, A., Molina, P., Gutierrez, C., Fuentes, A., Greenidge, V., Menéndez, E., De la Riva, G. and Selman, G. (1992) Regeneration of transgenic sugarcane (Saccharum officinarum L.) plants from intact meristematic tissues transformed by electroporation. Biotecnología Aplicada 9, 156-65.

    Google Scholar 

  • Arencibia, A., Molina, P., De la Riva, G. and Selman, G. (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Reports 14, 305-9.

    Google Scholar 

  • Chan, M.T., Lee, T.M. and Chang, H.H. (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33, 577-83.

    Google Scholar 

  • Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F. and Yu, S.M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22, 491-506.

    Google Scholar 

  • De Cleene, M. and Deley, J. (1976) The host range of crown gall. Bot. Rev. 42, 389-466.

    Google Scholar 

  • Doyle, J. and Doyle, J. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13-5.

    Google Scholar 

  • Gould, J., Devey, M., Hasegawa, O., Ulian, E., Peterson, G. and Smith, R. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95, 426-34.

    Google Scholar 

  • Grimsley, N., Hohn, T., Davies, J.W. and Hohn, B. (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177-9.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryiza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6, 271-82.

    Google Scholar 

  • Hood, E., Jen, G., Kayes, L., Kramer, J., Fraley, R. and Chilton, M. (1984) Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/Technology 2, 702-8.

    Google Scholar 

  • Hood, E., Helmer, G., Fraley, R. and Chilton, M. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291-300.

    Google Scholar 

  • Hooykaas, P. (1989) Transformation of plant cells via Agrobacterium. Plant Mol. Biol. 13, 327-36.

    Google Scholar 

  • Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14, 745-50.

    Google Scholar 

  • Jefferson, R. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405.

    Google Scholar 

  • Jin, S., Komari, T., Gordon, M. and Nester, E. (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169, 4417-25.

    Google Scholar 

  • Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9, 303-6.

    Google Scholar 

  • Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant Journal 10, 165-74.

    Google Scholar 

  • Larkin, P. and Scowcroft, W. (1981) Somaclonal variation: a novel source of variation from cell cultures for plant improvement. Theor. Appl. Genet. 60, 197-214.

    Google Scholar 

  • May, G., Afza, R., Mason, H., Wiecko, A., Novak, F. and Arntzen, C. (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Bio/Technology 13, 486-92.

    Google Scholar 

  • McElroy, D. (1996) The industrialisation of plant transformation. Nature Biotechnology 14, 715-6.

    Google Scholar 

  • Mooney, R., Goodwin, P., Dennis, E. and Llewellyn, D. (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue. Organ. Cult. 25, 209-18.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Pl. 15, 473-97.

    Google Scholar 

  • Otha, S., Mita, S., Hattori, T. and Nakamura, K. (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31, 805-13.

    Google Scholar 

  • Sambrook, J., Fritsch, E. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schlappi, M. and Hohn, B. (1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4, 7-16.

    Google Scholar 

  • Shafer, W., Gorz, A. and Kahl, G. (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327, 529-31.

    Google Scholar 

  • Shen, W.H., Escudero, J., Schläppi, M., Ramos, C., Hohn, B. and Koukolikovä-Nicola, Z. (1993) T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl Acad. Sci. USA 90, 1488-92.

    Google Scholar 

  • Simon, E. (1978) Membranes in dry and imbibed seeds. In: Crowe, J. and Clegg, J. ed. Dry Biological Systems. London, UK: London Academic Press, pp. 205-224.

    Google Scholar 

  • Srinivasan, C. and Vasil, I. (1985) Callus formation and plantlet regeneration from sugarcane protoplasts isolated from embryogenic cell suspension cultures. Amer. J. Bot. 72, 833-9.

    Google Scholar 

  • Stachel, S., Messens, E., Van Montagu, M. and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624-9.

    Google Scholar 

  • Vasil, I. and Vasil, V. (1986) Regeneration in cereals and other grass species. In: Vasil, I.K. ed. Cell Culture and Somatic Cell Genetics of Plants, Orlando, Florida, USA: Academic Press, 13, 121-50.

    Google Scholar 

  • Yu, S.M., Tzou, W.S., Lo, W.S., Kuo, Y.H., Lee, H.T. and Wu, R. (1992) Regulation of α-amylase-encoding gene expression in germinating seeds and cultured cells of rice. Gene 122, 247-53.

    Google Scholar 

  • Zhang, Z., Hayashimoto, A., Li, Z., Murai, N. (1990) Hygromycin resistance gene cassettes vector construction and selection of transformed rice protoplasts. Plant Physiology 97, 832-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arencibia, A.D., Carmona, E.R., Tellez, P. et al. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7, 213–222 (1998). https://doi.org/10.1023/A:1008845114531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008845114531

Navigation