Set-Valued Analysis

, Volume 7, Issue 2, pp 117–132

ε-Enlargements of Maximal Monotone Operators in Banach Spaces

  • Regina Sandra Burachik
  • B. F. Svaiter
Article

DOI: 10.1023/A:1008730230603

Cite this article as:
Burachik, R.S. & Svaiter, B.F. Set-Valued Analysis (1999) 7: 117. doi:10.1023/A:1008730230603

Abstract

Given a maximal monotone operator T in a Banach space, we consider an enlargement Tε, in which monotonicity is lost up to ε, in a very similar way to the ε-subdifferential of a convex function. We establish in this general framework some theoretical properties of Tε, like a transportation formula, local Lipschitz continuity, local boundedness, and a Brøndsted–Rockafellar property.

Banach spaces maximal monotone operators enlargement of an operator Brøndsted–Rockafellar property transportation formula Lipschitz continuity local boundedness 

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Regina Sandra Burachik
    • 1
  • B. F. Svaiter
    • 2
  1. 1.Engenharia de Sistemas e ComputaçãoCOPPE–UFRJBrazil
  2. 2.Instituto de Matemática Pura e AplicadaIMPARio de Janeiro, RJBrazil

Personalised recommendations