Journal of Computer-Aided Materials Design

, Volume 5, Issue 2, pp 193–206

On the nucleation and growth of voids at high strain-rates

  • J. Belak

DOI: 10.1023/A:1008685029849

Cite this article as:
Belak, J. Journal of Computer-Aided Materials Design (1998) 5: 193. doi:10.1023/A:1008685029849


The nucleation and growth of voids at high strain-rate is studied in copper as a model face centered cubic (fcc) material using large scale molecular dynamics (MD) methods. After a brief introduction to dynamic fracture, results are presented for the homogeneous nucleation of voids in single crystal copper and the heterogeneous nucleation in nanoscale polycrystalline copper. The simulations suggest void growth occurs through anisotropic dislocation nucleation and emission in agreement with experiment and the observed anisotropy of the tensile flow stress in fcc crystals. A phenomenological model for the transition from intergranular to transgranular fracture at high strain-rate is presented.

CopperDynamic fractureHigh strain-rateMolecular dynamicsSpallationVoid growth

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. Belak
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreU.S.A