1.

M.P. Bendsøe, A. Ben-Tal and J. Zowe, “Optimization methods for truss geometry and topology design,” Structural Optimization, vol. 7, pp. 141-159, 1994.

2.

A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User's Guide, Scientific Press, 1988.

3.

R.H. Byrd, M.E. Hribar and J. Nocedal, “An interior point algorithm for large scale nonlinear programming,” Technical Report OTC 97/05, Optimization Technology Center, Northwestern University, 1997.

4.

A.R. Conn, N. Gould and Ph.L. Toint, “A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds,” Math. of Computation, vol. 66, pp. 261-288, 1997.

5.

A.R. Conn, N. Gould and Ph.L. Toint, “A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints,” Technical Report Report 96/9, Dept of Mathematics, FUNDP, Namur (B), 1997.

6.

A.R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer Verlag, Heidelberg, New York, 1992.

7.

A. El-Bakry, R. Tapia, T. Tsuchiya and Y. Zhang, “On the formulation and theory of the Newton interior-point method for nonlinear programming,” J. of Optimization Theory and Appl., vol. 89, pp. 507-541, 1996.

8.

A.V. Fiacco and G.P. McCormick, “Nonlinear Programming: Sequential Unconstrainted Minimization Techniques,” Research Analysis Corporation, McLean Virginia, 1968 (Republished in 1990 by SIAM, Philadelphia).

9.

R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function,” Technical Report NA/171, University of Dundee, Dept. of Mathematics, Dundee, Scotland, 1997.

10.

A. Forsgren and P.E. Gill, “Primal-dual interior methods for nonconvex nonlinear programming,” Technical Report NA 96-3, Department of Mathematics, University of California, San Diego, 1996.

11.

R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Scientific Press, 1993.

12.

R.S. Gajulapalli and L.S. Lasdon, “Computational experience with a safeguarded barrier algorithm for sparse nonlinear programming,” Technical report, University Texas at Austin, 1997.

13.

D.M. Gay, M. L. Overton and M.H. Wright, “A primal-dual interior method for nonconvex nonlinear programming,” in Proceedings of the 1996 International Conference on Nonlinear Programming, Kluwer: Boston, 1998, to appear.

14.

P.E. Gill, W. Murray, D.B. Ponceleón and M.A. Saunders. “Solving reduced KKT systems in barrier methods for linear and quadratic programming,” Technical Report SOL 91-7, Systems Optimization Laboratory, Stanford University, Stanford, CA, 1991.

15.

R.L. Graham, “The largest small hexagon,” Journal of Combinatorial Theory, vol. 18, pp. 165-170, 1975.

16.

W. Hock and K. Schittkowski, “Test examples for nonlinear programming codes,” volume 187 of Lecture Notes in Economics and Mathematical Systems, Springer Verlag: Heidelberg, 1981.

17.

H. Lebret and S. Boyd, “Antenna array pattern synthesis via convex optimization,” IEEE Transactions on Signal Processing, vol. 45, pp. 526-532, 1997.

18.

I.J. Lustig, R.E. Marsten and D.F. Shanno, “Interior point methods for linear programming: computational state of the art,” ORSA J. on Computing, vol. 6, pp. 1-14, 1994.

19.

H. Mittelmann, Benchmarks for optimization software, http://plato.la.asu.edu/bench.html.

20.

B.A. Murtagh and M.A. Saunders, “MINOS 5.4 user's guide,” Technical Report SOL 83-20R, Systems Optimization Laboratory, Stanford University, 1983 (Revised February, 1995).

21.

D.F. Shanno and E.M. Simantiraki, “Interior-point methods for linear and nonlinear programming,” in The State of the Art in Numerical Analysis, Oxford University Press: New York, pp. 339-362, 1997.

22.

R.J. Vanderbei, Large-scale nonlinear AMPL models, http://www.sor.princeton.edu/^{~}rvdb/ampl/nlmodels/.

23.

R.J. Vanderbei, “LOQO: An interior point code for quadratic programming,” Technical Report SOR 94-15, Princeton University, 1994.

24.

R.J. Vanderbei, “Symmetric quasi-definite matrices,” SIAM Journal on Optimization, vol. 5,no. 1, pp. 100-113, 1995.

25.

R.J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer Academic Publishers: Boston, MA, 1996.

26.

T. Wang, R.D.C. Monteiro and J.S. Pang, “An interior-point potential reduction method for constrained equations,” Mathematical Programming, vol. 74, pp. 159-195, 1996.