1.

Alizadeh, W.F. (1995), Interior point methods in semidefinite programming with application to combinatorial optimization, *SIAM Journal on Optimization* 5: 13–51.

2.

Barahona, F., Jünger, M. and Reinelt, G. (1989), Experiments in quadratic 0–1 programming, *Mathematical Programming* 44: 127–137.

3.

Barahona, F. and Mahjoub, A.R. (1986), On the cut polytope, *Mathematical Programming* 36: 157–173.

4.

Bazaraa, M., Sherali, H.D. and Shetty, C.M. (1993), *Nonlinear Programming: Theory and Algorithms*, John Wiley & Sons, New York.

5.

Boros, E. and Hammer, P.L. (1991), The max–cut problem and quadratic 0–1 optimization; polyhedral aspect, relaxations and bounds, *Annals of Operations Research* 33: 151–180.

6.

Boros, E. and Hammer, P.L. (1993), Cut polytopes, Boolean quadric polytopes and nonnegative pseudo–Boolean functions, *Mathematics of Operations Research* 18: 245–253.

7.

Coleman, T.F. and Hulbert, L.A. (1989), A direct active set algorithm for large sparse quadratic programs with simple bounds, *Mathematical Programming*, 45: 373–406.

8.

De Angelis, P.L., Pardalos, P.M. and Toraldo, G. (1997), Quadratic Programming with box constraints, in I.M. Bomze et al. (eds.), *Developments in Global Optimization* (pp. 73–93), Kluwer Academic Publishers, Dordrecht, Boston, London.

9.

Delorme, C. and Poljak, S. (1993), Laplacian eigenvalues and the maximum cut problem, *Mathematical Programming* 62: 557–574.

10.

Fujie, T. and Kojima, M. (1997), Semidefinite programming relaxation for nonconvex quadratic programs, *Journal of Global Optimization* 10: 367–380.

11.

Hansen, P., Jaumard, B., Ruiz, M. and Xiong, J. (1993), Global minimization of indefinite quadratic functions subject to box constraints, *Naval Research Logistics Quarterly* 40: 373–392.

12.

Helmberg, C., Rendl, F., Vanderbei, R.J. and Wolkowicz, H. (1996), An interior-point method for semidefinite programming, *SIAM Journal on Optimization* 6: 342–361.

13.

Helmberg, C. and Rendl, F. (1995), Solving quadratic (0,1)-problems by semidefinite programs and cutting planes, ZIB Preprint SC–95-35.

14.

Kalantari, B. and Bagchi, A. (1990), An algorithm for quadratic zero–one programs, *Naval Research Logistics Quarterly* 37: 527–538.

15.

Kojima, M., Shindoh, S. and Hara, S. (1997), Interior-point methods for the monotone linear complementarity problem in symmetric matrices, *SIAM Journal on Optimization* 7: 86–125.

16.

Padberg, M. (1989), The Boolean quadric polytope: Some characteristics, facets and relatives, *Mathematical Programming* 45: 139–172.

17.

Pardalos, P.M. and Rodgers, G.P. (1990), Computational aspects of a branch and bound algorithm for quadratic zero–one programming, *Computing* 45: 131–144.

18.

Pardalos, P.M. and Vavasis, S.A. (1991), Quadratic programming with one negative eigenvalue is NP–hard, *Journal of Global Optimization* 1: 15–22.

19.

Poljak, S. and Rendl, F. (1995), Solving the max–cut problem using eigenvalues, *Discrete Applied Mathematics* 62: 249–278.

20.

Ramana, M. (1993), *An Algorithmic Analysis of Multiquadratic and Semidefinite Programming Problems*, PhD thesis, Johns Hopkins University, Baltimore, MD.

21.

Sherali, H. and Alameddine, A. (1990), An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes, *Annals of Operations Research* 25: 197–214.

22.

Sherali, H. and Alameddine, A. (1992), A new reformulation–linearization for solving bilinear programming problems, *Journal of Global Optimization* 2: 397–410.

23.

Sherali, H., Lee, Y. and Adams, W.P. (1995), A simultaneous lifting strategy for identifying new class of facets for Boolean quadric polytope, *Operations Research Letters* 17: 19–26.

24.

Sherali, H. and Tuncbilek, C.H. (1995), A reformulation–convexification approach for solving nonconvex quadratic programming problems, *Journal of Global Optimization* 7: 1–31.

25.

Simone, C.D. (1989), The cut polytope and the Boolean quadric polytope, *Discrete Mathematics* 79: 71–75.

26.

Vavasis, S.A. (1992), Approximate algorithms for indefinite quadratic programming, *Mathematical Programming* 57: 279–311.

27.

Ye, Y. (1992), On the affine scaling algorithm for nonconvex quadratic programming, *Mathematical Programming* 56: 285–300.