# A Polyhedral Approach for Nonconvex Quadratic Programming Problems with Box Constraints

Article

DOI: 10.1023/A:1008293029350

- Cite this article as:
- Yajima, Y. & Fujie, T. Journal of Global Optimization (1998) 13: 151. doi:10.1023/A:1008293029350

- 18 Citations
- 160 Downloads

## Abstract

We apply a linearization technique for nonconvex quadratic problems with box constraints. We show that cutting plane algorithms can be designed to solve the equivalent problems which minimize a linear function over a convex region. We propose several classes of valid inequalities of the convex region which are closely related to the Boolean quadric polytope. We also describe heuristic procedures for generating cutting planes. Results of preliminary computational experiments show that our inequalities generate a polytope which is a fairly tight approximation of the convex region.

Cutting plane methodLinearization techniqueNonconvex quadratic programsValid inequalities

## Copyright information

© Kluwer Academic Publishers 1998