1.
B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, “Wavelets for the fast solution of second-kind integral equations,” SIAM J. on Scient. Comput., vol. 14, no. 1, 1993, pp. 159–184.
2.
M. Bertero, C. De Mol, and E. R. Pike, “Linear inverse problems with discrete data. I: General formulation and singular system analysis,” Inverse Problems, vol. 1, 1985, pp. 301–330.
3.
M. Bertero, C. De Mol, and E. R. Pike, “Linear inverse problems with discrete data. II: Stability and regularisation,” Inverse Problems, vol. 4, 1988, pp. 573–594.
4.
G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I,” Communications on Pure and Applied Mathematics, vol. 44, 1991, pp. 141–183.
5.
Y. Bresler, J. A. Fessler, and A. Macovski, “A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 8, 1989, pp. 840–858.
6.
K. E. Brewer and S. W. Wheatcraft, “Including multi-scale information in the characterization of hydraulic conductivity distributions,” In E. Foufoula-Georgiou and P. Kumar (eds.), Wavelets in Geophysics, vol. 4 of Wavelet Analysis and its Applications, pp. 213–248. Academic Press, 1994.
7.
S. R. Brown, “Transport of fluid and electric current through a single fracture,” Journal of Geophysical Research, vol. 94, no. B7, 1989, pp. 9429–9438.
8.
W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method,” IEEE Trans. Medical Imaging, vol. 9, no. 2, pp. 218–225, 1990.
9.
W. C. Chew, Waves and Fields in Inhomogeneous Media, New York: Van Nostrand Reinhold, 1990.
10.
K. C. Chou, S. A. Golden, and A. S. Willsky, “Multiresolution stochastic models, data fusion and wavelet transforms,” Technical Report LIDS-P-2110, MIT Laboratory for Information and Decision Systems, 1992.
11.
K. C. Chou, A. S. Willsky, and R. Nikoukhah, “Multiscale recursive estimation, data fusion, and regularization,” IEEE Trans. Automatic Control, vol. 39, no. 3, 1994, pp. 464–478.
12.
K. C. Chou, A. S. Willsky, and R. Nikoukhah, “Multiscale systems, Kalman filters, and Riccati equations,” IEEE Trans. Automatic Control, vol. 39, no. 3, 1994, pp. 479–492.
13.
D. J. Crossley and O. G. Jensen, “Fractal velocity models in refraction seismology,” In C. H. Scholtz and B. B. Mandelbrot (eds.), Fractals in Geophysics, pp. 61–76. Birkhauser, 1989.
14.
I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, vol. 41, 1988, pp. 909–996.
15.
A. J. Devaney, “Geophysical diffraction tomography,” IEEE Trans. on Geoscience and Remote Sensing, vol. GE-22, no. 1, 1984, pp. 3–13.
16.
A. J. Devaney and G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. ASSP, vol. 39, no. 3, 1991, pp. 672–682.
17.
A. J. Devaney and G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography, part II: Strongly scattering objects,” IEEE Trans. ASSP, vol. 39, no. 6, 1991, pp. 1466–1470.
18.
D. C. Dobson, “Estimates on resolution and stabilization for the linearized inverse conductivity problem,” Inverse Problems, vol. 8, 1992, pp. 71–81.
19.
D. C. Dobson and F. Santosa, “An image-enhancement technique for electrical impedance tomography,” Inverse Problems, vol. 10, 1994, pp. 317–334.
20.
D. C. Dobson and F. Santosa, “Resolution and stability analysis of an inverse problem in electrical impedance tomography: Dependence on the input current patterns,” SIAM J. Appl. Math., vol. 54, no. 6, pp. 1542–1560.
21.
P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian motion,” IEEE Trans. Information Theory, vol. 38, no. 2, pp. 910–917.
22.
D. G. Gisser, D. Isaacson, and J. C. Newell, “Electric current computed tomography and eigenvalues,” SIAM J. Appl. Math., vol. 50, no. 6, pp. 1623–1634.
23.
T. M. Habashy, W. C. Chew, and E. Y. Chow, “Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab,” Radio Science, vol. 21, no. 4, pp. 635–645.
24.
T. M. Habashy, E. Y. Chow, and D. G. Dudley, “Profile inversion using the renormalized source-type integral equation approach,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 5, pp. 668–682.
25.
T. M. Habashy, R. W. Groom, and B. R. Spies, “Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering,” Journal of Geophysical Research, vol. 98, no. B2, pp. 1759–1775.
26.
R. F. Harrington, Field Computations by Moment Methods, Macmillan Publ. Co., 1968.
27.
J. H. Hippler, H. Ermert, and L. von Bernus, “Broadband holography applied to eddy current imaging using signals with multiplied phases,” Journal of Nondestructive Evaluation, vol. 12, no. 3, pp. 153–162.
28.
S. L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal algorithm,” Journal of the ACM, vol. 23, no. 2, 1976, pp. 368–388.
29.
D. Isaacson, “Distinguishability of conductivities by electrical current computed tomography,” IEEE Trans. on Medical Imaging, vol. MI-5, no. 2, 1986, pp. 91–95.
30.
D. Isaacson and M. Cheney, “Current problems in impedance imaging,” In D. Colton, R. Ewing, and W. Rundell (eds.), Inverse Problems in Partial Differential Equations, Ch. 9, pp. 141–149. SIAM, 1990.
31.
D. Isaacson and M. Cheney, “Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms,” SIAM J. Appl. Math., vol. 51, no. 6, 1991, 1705–1731.
32.
D. L. Jaggard, “On fractal electrodynamics,” In H. N. Kritikos and D. L. Jaggard (eds.), Recent Advances in Electromagnetic Theory, pp. 183–224. Springer-Verlag, 1990.
33.
J. M. Lees and P. E. Malin, “Tomographic images of pwave velocity variation at Parkfield, California,” Journal of Geophysical Research, vol. 95, no. B13, 1990, pp. 21,793–21,804.
34.
V. Liepa, F. Santosa, and M. Vogelius, “Crack determination from boundary measurements—Reconstruction using experimental data,” Journal of Nondestructive Evaluation, vol. 12, no. 3, 1993, pp. 163–174.
35.
S. G. Mallat, “A theory of multiresolution signal decomposition: The wavelet representation,” IEEE Trans. PAMI, vol. 11, no. 7, 1989, pp. 674–693.
36.
J. M. Beaulieu and M. Goldberg, “Hierarchy in picture segmentation: A stepwise optimization approach,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 2, 1989, pp. 150–163.
37.
E. L. Miller, “The application of multiscale and statistical techniques to the solution of inverse problems,” Technical Report LIDS-TH-2258, MIT Laboratory for Information and Decision Systems, Cambridge, 1994.
38.
E. L. Miller, “A scale-recursive, statistically-based method for anomaly characterization in images based upon observations of scattered radiation,” In 1995 IEEE International Conference on Image Processing, 1995.
39.
E. L. Miller and A. S. Willsky, “A multiscale approach to sensor fusion and the solution of linear inverse problems,” Applied and Computational Harmonic Analysis, vol. 2, 1995, pp. 127–147.
40.
E. L. Miller and A. S. Willsky, “Multiscale, statistically-based inversion scheme for the linearized inverse scattering problem,” IEEE Trans. on Geoscience and Remote Sensing, March 1996, vol. 36, no. 2, pp. 346–357.
41.
E. L. Miller and A. S. Willsky, “Wavelet-based, stochastic inverse scattering methods using the extended Born approximation,” In Progress in Electromagnetics Research Symposium, 1995. Seattle, Washington.
42.
J. Le Moigne and J. C. Tilton, “Refining image segmentation by integration of edge and region data,” IEEE Trans. on Geoscience and Remote Sensing, vol. 33, no. 3, 1995, pp. 605–615.
43.
J. E. Molyneux and A. Witten, “Impedance tomography: imaging algorithms for geophysical applications,” Inverse Problems, vol. 10, 1994, pp. 655–667.
44.
D. J. Rossi and A. S. Willsky, “Reconstruction from projections based on detection and estimation of objects- parts I and II: Performance analysis and robustness analysis,” IEEE Trans. on ASSP, vol. ASSP-32, no. 4, 1984, pp. 886–906.
45.
K. Sauer, J. Sachs, Jr., and C. Klifa, “Bayesian estimation of 3D objects from few radiographs,” IEEE Trans. Nuclear Science, vol. 41, no. 5, 1994, pp. 1780–1790.
46.
A. Schatzberg, A. J. Devaney, and A. J. Witten, “Estimating target location from scattered field data,” Signal Processing, vol. 40, 1994, pp. 227–237.
47.
A. H. Tewfick and M. Kim, “Correlation structure of the discrete wavelet coefficients of fractional Brownian motion,” IEEE Trans. Information Theory, vol. 38, no. 2, pp. 904–909.
48.
C. Torres-Verdin and T. M. Habashy, “Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation,” Radio Science, 1994, pp. 1051–1079.
49.
H. L. Van Trees, Detection, Estimation and Modulation Theory: Part I. New York: John Wiley and Sons, 1968.
50.
G. W. Wornell, “A Karhuenen-Loeve-like expansion for 1/fprocesses via wavelets,” IEEE Transactions on Information Theory, vol. 36, 1990, pp. 859–861.