Practical Handling of ExceptionTainted Rules and Independence Information in Possibilistic Logic
 Salem Benferhat,
 Didier Dubois,
 Henri Prade
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
This paper provides a survey of possibilistic logic as a simple and efficient tool for handling nonmonotonic reasoning, with some emphasis on algorithmic issues. In our previous works, two wellknown nonmonotonic systems have been encoded in the possibility theory framework: the preferential inference based on System P, and the rational closure inference proposed by Lehmann and Magidor which relies on System P augmented with a rational monotony postulate. System P is known to provide reasonable but very cautious conclusions, and in particular, preferential inference is blocked by the presence of “irrelevant” properties. When using Lehmann's rational closure, the inference machinery, which is then more productive, may still remain too cautious, or on the contrary, provide counter intuitive conclusions. The paper proposes an approach to overcome the cautiousness of System P and the problems encountered by the rational closure inference. This approach takes advantage of (contextual) independence assumptions of the form: the fact that γ is true (or is false) does not affect the validity of the rule “normally if α then β”. The modelling of such independence assumptions is discussed in the possibilistic framework. Moreover, we show that when a counterintuitive conclusion of a set of defaults can be inferred, it is always possible to repair the set of defaults by adding suitable information so as to produce the desired conclusions and block unsuitable ones.
 L. Morgenstern, “Inheritance comes of age: Applying nonmonotonic techniques to problems in industry,” in Proc. of the Fiftheenth Int. Joint Conf. on Artificial Intelligence (IJCAI97), Nagoya, Japan, 1997, pp. 1613 1613.
 L. Morgenstern and M. Singh, “An expert system using nonmonotonic techniques for benefits inquiry in the insurance industry,” in Proc. of the Fifteenth Int. Joint Conf. on Artificial Intelligence (IJCAI97), Nagoya, Japan, 1997, pp. 655 661.
 D. Dubois, J. Lang, and H. Prade, “Possibilistic logic,” in Handbook of Logic in Artificial Intelligence and Logic Programming, edited by D.M. Gabbay, C.J. Hogger, J.A. Robinson, and D. Nute, Oxford University Press, vol. 3, pp. 439 513, 1994.
 D. Dubois, J. Lang, and H. Prade, “Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights,” IEEE Trans. on Knowledge and Data Engineering, vol. 6, no.1, pp. 64 71, 1994.
 F.F. Monai and T. Chehire, “Possibilistic assumption based truth maintenance system, validation in a data fusion application,” in Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence, edited by D. Dubois et al., 1992, pp. 83 91.
 S. Benferhat, T. Cherire, and F.F. Monai, “Possibilistic ATMS in a data fusion problem,” in Fuzzy Information Engineering: A Guided Tour of Applications, edited by D. Dubois, H. Prade, and R.R. Yager, John Wily & sons, 1997.
 S. Benferhat, D. Dubois, and H. Prade, “Representing default rules in possibilistic logic,” in Proc. of the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR'92), Cambridge, MA, October 1992, pp. 673 684.
 D. Dubois and H. Prade, “Conditional objects, possibility theory and default rules,” in Conditionals: From Philosophy to Computer Sciences, edited by G. Crocco, L. Fariñas del Cerro, and A. Herzig, Oxford University Press, pp. 301 336, 1995.
 S. Kraus, D. Lehmann, and M. Magidor, “Nonmonotonic reasoning, preferential models and cumulative logics,” Artificial Intelligence, vol. 44, pp. 167 207, 1990.
 D. Lehmann and M. Magidor, “What does a conditional knowledge base entail?” Artficial Intelligence, vol. 55, pp. 1 60, 1992.
 S. Benferhat, D. Dubois, and H. Prade, “Beyond counterexamples to nonmonotonic formalisms: A possibilitytheoretic analysis,” in Proc. of the 12th Europ. Conf. on Artificial Intelligence (ECAI'96), edited by W. Wahlster, Budapest, Hungary, Wiley: New York, August 1996, pp. 652 656.
 S. Benferhat, D. Dubois, and H. Prade, “Coping with the limitations of rational inference in the framework of possibility theory,” in Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence, edited by E. Horvitz and F. Jensen, Portland, Oregon, Morgan Kaufmann: San Mateo, CA, August 1996, pp. 90 97.
 L.A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 1, pp. 3 28, 1978.
 D. Dubois and H. Prade, (with the collaboration of H. Farreny, R. MartinClouaire, C. Testemale), Possibility Theory—An Approach to Computerized Processing of Uncertainty, Plenum Press: New York, 1988.
 P. Gärdenfors, Knowledge in Flux—Modeling the Dynamic of Epistemic States, MIT Press: Cambridge, MA, 1988.
 G.L.S. Shackle, Decision, Order and Time in Human Affairs, Cambridge University Press: Cambridge, UK, 1961.
 L.J. Cohen, The Probable and the Provable, Clarendon Press: Oxford, UK, 1977.
 N. Rescher, Plausible Reasoning: An Introduction to the Theory and Practice of Plausibilistic Inference, Van Gorcum, Amsterdam, 1976.
 W. Spohn, “Ordinal conditional functions: A dynamic theory of epistemic states,” in Causation in Decision, Belief Change, and Statistics, edited by W.L. Harper and B. Skyrms, Kluwer Academic Publ.: Dordrecht, pp. 105 134, 1988.
 D. Dubois, “Belief structures, possibility theory, decomposable confidence measures on finite sets,” Computer and Artificial Intelligence, vol. 5, no.5, pp. 403 417, 1986.
 D. Dubois and H. Prade, “Epistemic entrenchment and possibilistic logic,” Artificial Intelligence, vol. 50, pp. 223 239, 1991.
 R.R. Yager, “On the specificity of a possibility distribution,” Fuzzy Sets and Systems, vol. 50, pp. 279 292, 1992.
 Y. Shoham, “Reasoning about Change—Time and Causation from the Standpoint of Artificial Intelligence,” MIT Press: Cambridge, MA, 1988.
 D. Dubois and H. Prade, “Possibilistic logic, preferential models, nonmonotonicity and related issues,” in Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI'91), Sydney, August 1991, pp. 419 424.
 S. Benferhat, D. Dubois, and H. Prade, “Nonmonotonic reasoning, conditional objects and possibility theory,” Artificial Intelligence, vol. 92, pp. 259 276, 1997.
 E. Hisdal, “Conditional possibilities independence and noninteraction,” Fuzzy Sets and Systems, vol. 1, pp. 283 297, 1978.
 D. Dubois and H. Prade, “Necessity measures and the resolution principle,” IEEE Trans. Systems, Man and Cybernetics, vol. 17, pp. 474 478, 1987.
 D. Dubois, J. Lang, and H. Prade, “Theorem proving under uncertainty—A possibility theorybased approah,” in Proc. of the Tenth Int. Joint Conf. on Artificial Intelligence (IJCAI87), 1987, pp. 984 986.
 J. Lang, “Logique possibiliste: Aspects formels, d´eduction automatique, et applications,” Ph.D. Thesis, Universite P. Sabatier, Toulouse, France, January 1991.
 E. Sandewall, “The range of applicability of nonmonotonic logics for the inerrtia problem,” in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI93), 1993, pp. 738 743.
 M.O. Cordier and P. Siegel, “Prioritized transitions for updates,” in Proc. of the AI'93 Workshop on Belief Revision, Melbourn, 1993.
 D. Dubois and H. Prade, “Combining hypothetical reasoning and plausible inference in possibilistic logic,” Multiple Valued Logic, vol. 1, pp. 219 239, 1996.
 S. Benferhat, “Handling hard rules and default rules in possibilistic logic,” in Advances in Intelligent Computing—IPMU'94 (Selected Papers of the Inter. Conf. on Information Processing and Management of Uncertainty in KnowledgeBased Systems (IPMU'94), Paris, France, July 1994) edited by B. BouchonMeunier, R.R. Yager, and L.A. Zadeh, Lecture Notes in Computer Science, Springer Verlag: Berlin, vol. 945, 1995, pp. 302 310.
 D.M. Gabbay, “Theoretical foundations for nonmonotonic reasoning in expert systems,” in Logics and Models of Concurrent Systems, edited by K.R. Apt, SpringerVerlag, pp. 439 457, 1985.
 D. Makinson, “General theory of cumulative inference,” in NonMonotonic Reasoning, edited by M. Reinfrank, J. De Kleer, M.L. Ginsberg, and E. Sandewall, LNAI, Springer Verlag: Berlin, vol. 346, pp. 1 18, 1989.
 P. Gärdenfors and D. Makinson, “Nonmonotonic inference based on expectations,” Artificial Intelligence, vol. 65, pp. 197 245, 1994.
 E.W. Adams, The Logic of Conditionals, Reidel: Dordrecht, 1975.
 J. Pearl, “System Z: A natural ordering of defaults with tractable applications to default reasoning,” in Proc. of the 3rd Conf. on Theoretical Aspects of Reasoning about Knowledge (TARK'90), San Mateo, CA, 1990, pp. 121 135.
 M. Goldszmidt and J. Pearl, “On the relation between rational closure and System Z,” in Proc. of the 3rd Int. Workshop on Nonmonotonic Reasoning, South Lake Tahoe, 1990, pp. 130 140.
 D. Dubois, L. Fariñas del Cerro, A. Herzig, and H. Prade, “Qualitative relevance and independence: A roadmap,” in Proc. of the Fiftheenth Int. Joint Conf. on Artificial Intelligence (IJCAI97), Nagoya, Japan, 1997, pp. 62 67.
 S. Benferhat, D. Dubois, and H. Prade, “Expressing independence in a possibilistic framework and its application to default reasoning,” in Proc. of the 11th Europ. Conf. on Artificial Intelligence (ECAI'94), Amsterdam, August 1994, pp. 150 154.
 D. Dubois, L. Fariñas del Cerro, A. Herzig, and H. Prade, “An ordinal view of independence with application to plausible reasoning,” in Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence, edited by R. Lopez de Mantaras and D. Poole, Seattle, WA, July 1994, pp. 195 203.
 D. Dubois, J. Lang, and H. Prade, “A possibilistic assumptionsbased truth maintenance systems with uncertain justifications and its application to belief revision,” in Truth Maintenance Systems—Proc. ECAI90 Workshop, Stockholm, Sweeden, August 1990, edited by J.P. Martins and M. Reinfrank, Lecture Notes in Artificial Intelligence, vol. 55, pp. 87 106.
 S. Nahmias, “Fuzzy variables,” Fuzzy Sets and Systems, pp. 97 110, 1978.
 Title
 Practical Handling of ExceptionTainted Rules and Independence Information in Possibilistic Logic
 Journal

Applied Intelligence
Volume 9, Issue 2 , pp 101127
 Cover Date
 19980901
 DOI
 10.1023/A:1008259801924
 Print ISSN
 0924669X
 Online ISSN
 15737497
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 possibilistic logic
 plausible reasoning
 possibilistic independence
 repairing knowledge bases
 Industry Sectors
 Authors

 Salem Benferhat ^{(1)}
 Didier Dubois ^{(1)}
 Henri Prade ^{(1)}
 Author Affiliations

 1. Institut de Recherche en Informatique de Toulouse (I.R.I.T.), Université Paul Sabatier, C.N.R.S., 118 route de Narbonne, 31062 Toulouse Cedex 4, France