# Global Optimization of Nonconvex Polynomial Programming Problems Having Rational Exponents

DOI: 10.1023/A:1008249414776

- Cite this article as:
- Sherali, H.D. Journal of Global Optimization (1998) 12: 267. doi:10.1023/A:1008249414776

- 30 Citations
- 314 Downloads

## Abstract

This paper considers the solution of nonconvex polynomial programming problems that arise in various engineering design, network distribution, and location-allocation contexts. These problems generally have nonconvex polynomial objective functions and constraints, involving terms of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on variables. For such problems, we develop an extension of the Reformulation-Linearization Technique (RLT) to generate linear programming relaxations that are embedded within a branch-and-bound algorithm. Suitable branching or partitioning strategies are designed for which convergence to a global optimal solution is established. The procedure is illustrated using a numerical example, and several possible extensions and algorithmic enhancements are discussed.