, Volume 7, Issue 3, pp 321-344

Two Dogmas of Computationalism

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first shown (Section 4) that whether a process is algorithmic depends on the way we describe the process. It is then argued (Section 5) that systems compute even if their processes are not described as algorithmic. The paper concludes with a suggestion for a semantic approach to computation.

This revised version was published online in July 2006 with corrections to the Cover Date.