1.

Cohon, J. L. (1978), *Multiobjective Programming and Planning*, Academic Press, New York.

2.

Evans, G. W. (1984), An Overview of Techniques for Solving Multiobjective Mathematical Programs, *Management Science* 30, 1268–1282.

3.

Goicoechea, A., Hansen, D. R. and Duckstein, L. (1982), *Multiobjective Decision Analysis with Engineering and Business Applications*, John Wiley and Sons, New York.

4.

Luc, D. T. (1989), *Theory of Vector Optimization*, Springer Verlag, Berlin/New York.

5.

Sawaragi, Y., Nakayama, H. and Tanino, T. (1985), *Theory of Multiobjective Optimization*, Academic Press, Orlando, Florida.

6.

Steuer, R. E. (1986), *Multiple Criteria Optimization: Theory, Computation, and Application*, John Wiley and Sons, New York.

7.

Yu, P. L. (1985), *Multiple Criteria Decision Making*, Plenum, New York.

8.

Zeleny, M. (1982), *Multiple Criteria Decision Making*, McGraw-Hill, New York.

9.

Kuhn, H. W. and Tucker, A. W. (1950), Nonlinear Programming, in J. Neyman (ed.), *Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability*, University of California Press, Berkeley, California, pp. 481–492.

10.

Geoffrion, A. M. (1968), Proper Efficiency and the Theory of Vector Maximization,

*Journal of Mathematical Analysis and Applications* 22, 618–630.

CrossRef11.

Philip, J. (1972), Algorithms for the Vector Maximization Problem,

*Mathematical Programming* 2, 207–229.

CrossRef12.

Evans, J. P. and Steuer, R. E. (1973), Generating Efficient Extreme Points in Linear Multiple Objective Programming: Two Algorithms and Computing Experience, in J. L. Cochrane and M. Zeleny (eds.), *Multiple-Criteria Decision Making*, University of South Carolina Press, Columbia, South Carolina, pp. 349–365.

13.

Yu, P. L. and Zeleny, M. (1975), The Set of All Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method,

*Journal of Mathematical Analysis and Applications* 49, 430–468.

CrossRef14.

Benson, H. P. (1979), Vector Maximization with Two Objective Functions,

*Journal of Optimization Theory and Applications* 28, 253–257.

CrossRef15.

Isermann, H. (1977), The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program, *Operational Research Quarterly* 28, 711–725.

16.

Bitran, G. R. (1979), Theory and Algorithms for Linear Multiple Objective Programs with Zero-One Variables,

*Mathematical Programming* 17, 362–390.

CrossRef17.

Villarreal, B. and Karwan, M. H. (1981), Multicriteria Integer Programming: A (Hybrid) Dynamic Programming Recursive Approach,

*Mathematical Programming* 21, 204–223.

CrossRef18.

Kostreva, M. M. and Wiecek, M. M. (1993), Time Dependency in Multiple Objective Dynamic Programming,

*Journal of Mathematical Analysis and Applications* 173, 289–307.

CrossRef19.

Marcotte, O. and Soland, R. M. (1986), An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization, *Management Science* 32, 61–75.

20.

Steuer, R. E. (1976), A Five-Phase Procedure for Implementing a Vector-Maximum Algorithm for Multiple Objective Linear Programming Problems, in H. Thiriez and S. Zionts (eds.), *Multiple-Criteria Decision Making: Jouy-en-Josas, France*, Springer Verlag, Berlin/New York.

21.

Benson, H. P. (1997), Generating the Efficient Outcome Set in Multiple Objective Linear Programs: The Bicriteria Case, *Acta Mathematica Vietnamica* 22, 29–51.

22.

Sayin, S. (1996), An Algorithm Based on Facial Decomposition for Finding the Efficient Set in Multiple Objective Linear Programming,

*Operations Research Letters* 19, 87–94.

CrossRef23.

Armand, P. (1993), Finding All Maximal Efficient Faces in Multiobjective Linear Programming,

*Mathematical Programming* 61, 357–375.

CrossRef24.

Armand, P. and Malivert, C. (1991), Determination of the Efficient Decision Set in Multiobjective Linear Programming,

*Journal of Optimization Theory and Applications* 70, 467–489.

CrossRef25.

Benson, H. P. (1981), Finding an Initial Efficient Extreme Point for a Linear Multiple Objective Program,

*The Journal of the Operational Research Society* 32, 495–498.

CrossRef26.

Benson, H. P. (1985), Multiple Objective Linear Programming with Parametric Criteria Coefficients, *Management Science* 31, 461–474.

27.

Benson, H. P. and Aksoy, Y. (1991), Using Efficient Feasible Directions in Interactive Multiple Objective Linear Programming,

*Operations Research Letters* 10, 203–209.

CrossRef28.

Ecker, J. G. and Kouada, I. A. (1978), Finding All Efficient Extreme Points for Multiple Objective Linear Programs,

*Mathematical Programming* 14, 249–261.

CrossRef29.

Ecker, J. G., Hegner, N. S. and Kouada, I. A. (1980), Generating All Maximal Efficient Faces for Multiple Objective Linear Programs,

*Journal of Optimization Theory and Applications* 30, 353–381.

CrossRef30.

Gal, T. (1977), A General Method for Determining the Set of All Efficient Solutions to a Linear Vector Maximum Problem,

*European Journal of Operational Research* 1, 307–322.

CrossRef31.

Zeleny, M. (1974), *Linear Multiobjective Programming*, Springer Verlag, Berlin/New York.

32.

Benson, H. P. and Sayin, S. (1997), Towards Finding Global Representations of the Efficient Set in Multiple Objective Mathematical Programming,

*Naval Research Logistics* 44, 47–67.

CrossRef33.

Steuer, R. E. (1989), *ADBASE Multiple Objective Linear Programming Package*, University of Georgia, Athens, Georgia, 1989.

34.

Dauer, J. P. and Liu, Y. H. (1990), Solving Multiple Objective Linear Programs in Objective Space,

*European Journal of Operational Research* 46, 350–357.

CrossRef35.

Dauer, J. P. and Saleh, O. A. (1990), Constructing the Set of Efficient Objective Values in Multiple Objective Linear Programs,

*European Journal of Operational Research* 46, 358–365.

CrossRef36.

Morse, J. N. (1980), Reducing the Size of the Nondominated Set: Pruning by Clustering,

*Computers and Operations Research* 7, 55–66.

CrossRef37.

Steuer, R. E. (1976), Multiple Objective Linear Programming with Interval Criterion Weights, *Management Science* 23, 305–316.

38.

Steuer, R. E. and Harris, F. W. (1980), Intra-Set Point Generation and Filtering in Decision and Criterion Space,

*Computers and Operations Research* 7, 41–53.

CrossRef39.

Benson, H. P. (1995), A Geometrical Analysis of the Efficient Outcome Set in Multiple-Objective Convex Programs with Linear Criterion Functions,

*Journal of Global Optimization* 6, 231–251.

CrossRef40.

Dauer, J. P. (1987), Analysis of the Objective Space in Multiple Objective Linear Programming,

*Journal of Mathematical Analysis and Applications* 126, 579–593.

CrossRef41.

Dauer, J. P. (1993), On Degeneracy and Collapsing in the Construction of the Set of Objective Values in a Multiple Objective Linear Program,

*Annals of Operations Research* 47, 279–292.

CrossRef42.

Gallagher, R. J. and Saleh, O. A. (1995), A Representation of an Efficiency Equivalent Polyhedron for the Objective Set of a Multiple Objective Linear Program,

*European Journal of Operational Research* 80, 204–212.

CrossRef43.

Dauer, J. P. and Gallagher, R. J. (1996), A Combined Constraint-Space, Objective-Space Approach for Determining High-Dimensional Maximal Efficient Faces of Multiple Objective Linear Programs,

*European Journal of Operational Research* 88, 368–381.

CrossRef44.

Jahn, J., On the Determination of Minimal Facets and Edges of a Polyhedral Set, *Journal of Multi-Criteria Decision Analysis*, to appear.

45.

Armann, R. (1989), Solving Multiobjective Programming Problems by Discrete Representation, *Optimization* 20, 483–492.

46.

Horst, R. and Tuy, H. (1993), *Global Optimization: Deterministic Approaches*, 2nd edition, Springer Verlag, Berlin/New York.

47.

Horst, R. and Pardalos, P., eds. (1995), *Handbook of Global Optimization*, Kluwer Academic Publishers, Dordrecht/Boston/London.

48.

Benson, H. P. (1996), Deterministic Algorithms for Constrained Concave Minimization: A Unified Critical Survey,

*Naval Research Logistics* 43, 765–795.

CrossRef49.

Rockafellar, R. T. (1970), *Convex Analysis*, Princeton University Press, Princeton, New Jersey.

50.

Benson, H. P. and Lee, D. (1996), Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem,

*Journal of Optimization Theory and Applications* 88, 77–105.

CrossRef51.

Falk, J. E. and Hoffman, K. L. (1976), A Successive Underestimating Method for Concave Minimization Problems,

*Mathematics of Operations Research* 1, 251–259.

CrossRef52.

Tuy, H. (1983), On Outer Approximation Methods for Solving Concave Minimization Problems, *Acta Mathematica Vietnamica* 8, 3–34.

53.

Thieu, T. V., Tam, B. T. and Ban, T. V. (1983), An Outer Approximation Method for Globally Minimizing a Concave Function over a Compact Convex Set, *Acta Mathematica Vietnamica* 8, 21–40.

54.

Horst, R., Thoai, N. V. and Devries, J. (1988), On Finding the New Vertices and Redundant Constraints in Cutting Plane Algorithms for Global Optimization,

*Operations Research Letters* 7, 85–90.

CrossRef55.

Thieu, N. V. (1988), A Finite Method for Globally Minimizing a Concave Function over an Unbounded Polyhedral Convex Set and Its Applications,

*Acta Mathematica Hungarica* 52, 21–36.

CrossRef56.

Chen, P. C., Hansen, P. and Jaumard, B. (1991), On-Line and Off-Line Vertex Enumeration by Adjacency Lists,

*Operations Research Letters* 10, 403–409.

CrossRef57.

Horst, R. (1991), On the Vertex Enumeration Problem in Cutting Plane Algorithms of Global Optimization, in G. Fandel and H. Gehring (eds.), *Operations Research*, Springer Verlag, Berlin/New York, pp. 13–22.

58.

Horst, R. and Thoai, N. V. (1989), Modification, Implementation and Comparison of Three Algorithms for Globally Solving Linearly Constrained Concave Minimization Problems,

*Computing* 42, 271–289.

CrossRef59.

Stadler, W., ed. (1988), *Multicriteria Optimization in Engineering and the Sciences*, Plenum Press, New York.

60.

Benson, H. P. (1982), Admissible Points of a Convex Polyhedron,

*Journal of Optimization Theory and Applications* 38, 341–361.

CrossRef61.

International Mathematical and Statistical Libraries, Inc. (1991), *The IMSL Library Reference Manual*, IMSL, Houston, Texas.