1.
Cohon, J. L. (1978), Multiobjective Programming and Planning, Academic Press, New York.
2.
Evans, G. W. (1984), An Overview of Techniques for Solving Multiobjective Mathematical Programs, Management Science 30, 1268–1282.
3.
Goicoechea, A., Hansen, D. R. and Duckstein, L. (1982), Multiobjective Decision Analysis with Engineering and Business Applications, John Wiley and Sons, New York.
4.
Luc, D. T. (1989), Theory of Vector Optimization, Springer Verlag, Berlin/New York.
5.
Sawaragi, Y., Nakayama, H. and Tanino, T. (1985), Theory of Multiobjective Optimization, Academic Press, Orlando, Florida.
6.
Steuer, R. E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley and Sons, New York.
7.
Yu, P. L. (1985), Multiple Criteria Decision Making, Plenum, New York.
8.
Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York.
9.
Kuhn, H. W. and Tucker, A. W. (1950), Nonlinear Programming, in J. Neyman (ed.), Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, pp. 481–492.
10.
Geoffrion, A. M. (1968), Proper Efficiency and the Theory of Vector Maximization,
Journal of Mathematical Analysis and Applications 22, 618–630.
CrossRef11.
Philip, J. (1972), Algorithms for the Vector Maximization Problem,
Mathematical Programming 2, 207–229.
CrossRef12.
Evans, J. P. and Steuer, R. E. (1973), Generating Efficient Extreme Points in Linear Multiple Objective Programming: Two Algorithms and Computing Experience, in J. L. Cochrane and M. Zeleny (eds.), Multiple-Criteria Decision Making, University of South Carolina Press, Columbia, South Carolina, pp. 349–365.
13.
Yu, P. L. and Zeleny, M. (1975), The Set of All Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method,
Journal of Mathematical Analysis and Applications 49, 430–468.
CrossRef14.
Benson, H. P. (1979), Vector Maximization with Two Objective Functions,
Journal of Optimization Theory and Applications 28, 253–257.
CrossRef15.
Isermann, H. (1977), The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program, Operational Research Quarterly 28, 711–725.
16.
Bitran, G. R. (1979), Theory and Algorithms for Linear Multiple Objective Programs with Zero-One Variables,
Mathematical Programming 17, 362–390.
CrossRef17.
Villarreal, B. and Karwan, M. H. (1981), Multicriteria Integer Programming: A (Hybrid) Dynamic Programming Recursive Approach,
Mathematical Programming 21, 204–223.
CrossRef18.
Kostreva, M. M. and Wiecek, M. M. (1993), Time Dependency in Multiple Objective Dynamic Programming,
Journal of Mathematical Analysis and Applications 173, 289–307.
CrossRef19.
Marcotte, O. and Soland, R. M. (1986), An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization, Management Science 32, 61–75.
20.
Steuer, R. E. (1976), A Five-Phase Procedure for Implementing a Vector-Maximum Algorithm for Multiple Objective Linear Programming Problems, in H. Thiriez and S. Zionts (eds.), Multiple-Criteria Decision Making: Jouy-en-Josas, France, Springer Verlag, Berlin/New York.
21.
Benson, H. P. (1997), Generating the Efficient Outcome Set in Multiple Objective Linear Programs: The Bicriteria Case, Acta Mathematica Vietnamica 22, 29–51.
22.
Sayin, S. (1996), An Algorithm Based on Facial Decomposition for Finding the Efficient Set in Multiple Objective Linear Programming,
Operations Research Letters 19, 87–94.
CrossRef23.
Armand, P. (1993), Finding All Maximal Efficient Faces in Multiobjective Linear Programming,
Mathematical Programming 61, 357–375.
CrossRef24.
Armand, P. and Malivert, C. (1991), Determination of the Efficient Decision Set in Multiobjective Linear Programming,
Journal of Optimization Theory and Applications 70, 467–489.
CrossRef25.
Benson, H. P. (1981), Finding an Initial Efficient Extreme Point for a Linear Multiple Objective Program,
The Journal of the Operational Research Society 32, 495–498.
CrossRef26.
Benson, H. P. (1985), Multiple Objective Linear Programming with Parametric Criteria Coefficients, Management Science 31, 461–474.
27.
Benson, H. P. and Aksoy, Y. (1991), Using Efficient Feasible Directions in Interactive Multiple Objective Linear Programming,
Operations Research Letters 10, 203–209.
CrossRef28.
Ecker, J. G. and Kouada, I. A. (1978), Finding All Efficient Extreme Points for Multiple Objective Linear Programs,
Mathematical Programming 14, 249–261.
CrossRef29.
Ecker, J. G., Hegner, N. S. and Kouada, I. A. (1980), Generating All Maximal Efficient Faces for Multiple Objective Linear Programs,
Journal of Optimization Theory and Applications 30, 353–381.
CrossRef30.
Gal, T. (1977), A General Method for Determining the Set of All Efficient Solutions to a Linear Vector Maximum Problem,
European Journal of Operational Research 1, 307–322.
CrossRef31.
Zeleny, M. (1974), Linear Multiobjective Programming, Springer Verlag, Berlin/New York.
32.
Benson, H. P. and Sayin, S. (1997), Towards Finding Global Representations of the Efficient Set in Multiple Objective Mathematical Programming,
Naval Research Logistics 44, 47–67.
CrossRef33.
Steuer, R. E. (1989), ADBASE Multiple Objective Linear Programming Package, University of Georgia, Athens, Georgia, 1989.
34.
Dauer, J. P. and Liu, Y. H. (1990), Solving Multiple Objective Linear Programs in Objective Space,
European Journal of Operational Research 46, 350–357.
CrossRef35.
Dauer, J. P. and Saleh, O. A. (1990), Constructing the Set of Efficient Objective Values in Multiple Objective Linear Programs,
European Journal of Operational Research 46, 358–365.
CrossRef36.
Morse, J. N. (1980), Reducing the Size of the Nondominated Set: Pruning by Clustering,
Computers and Operations Research 7, 55–66.
CrossRef37.
Steuer, R. E. (1976), Multiple Objective Linear Programming with Interval Criterion Weights, Management Science 23, 305–316.
38.
Steuer, R. E. and Harris, F. W. (1980), Intra-Set Point Generation and Filtering in Decision and Criterion Space,
Computers and Operations Research 7, 41–53.
CrossRef39.
Benson, H. P. (1995), A Geometrical Analysis of the Efficient Outcome Set in Multiple-Objective Convex Programs with Linear Criterion Functions,
Journal of Global Optimization 6, 231–251.
CrossRef40.
Dauer, J. P. (1987), Analysis of the Objective Space in Multiple Objective Linear Programming,
Journal of Mathematical Analysis and Applications 126, 579–593.
CrossRef41.
Dauer, J. P. (1993), On Degeneracy and Collapsing in the Construction of the Set of Objective Values in a Multiple Objective Linear Program,
Annals of Operations Research 47, 279–292.
CrossRef42.
Gallagher, R. J. and Saleh, O. A. (1995), A Representation of an Efficiency Equivalent Polyhedron for the Objective Set of a Multiple Objective Linear Program,
European Journal of Operational Research 80, 204–212.
CrossRef43.
Dauer, J. P. and Gallagher, R. J. (1996), A Combined Constraint-Space, Objective-Space Approach for Determining High-Dimensional Maximal Efficient Faces of Multiple Objective Linear Programs,
European Journal of Operational Research 88, 368–381.
CrossRef44.
Jahn, J., On the Determination of Minimal Facets and Edges of a Polyhedral Set, Journal of Multi-Criteria Decision Analysis, to appear.
45.
Armann, R. (1989), Solving Multiobjective Programming Problems by Discrete Representation, Optimization 20, 483–492.
46.
Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, 2nd edition, Springer Verlag, Berlin/New York.
47.
Horst, R. and Pardalos, P., eds. (1995), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht/Boston/London.
48.
Benson, H. P. (1996), Deterministic Algorithms for Constrained Concave Minimization: A Unified Critical Survey,
Naval Research Logistics 43, 765–795.
CrossRef49.
Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.
50.
Benson, H. P. and Lee, D. (1996), Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem,
Journal of Optimization Theory and Applications 88, 77–105.
CrossRef51.
Falk, J. E. and Hoffman, K. L. (1976), A Successive Underestimating Method for Concave Minimization Problems,
Mathematics of Operations Research 1, 251–259.
CrossRef52.
Tuy, H. (1983), On Outer Approximation Methods for Solving Concave Minimization Problems, Acta Mathematica Vietnamica 8, 3–34.
53.
Thieu, T. V., Tam, B. T. and Ban, T. V. (1983), An Outer Approximation Method for Globally Minimizing a Concave Function over a Compact Convex Set, Acta Mathematica Vietnamica 8, 21–40.
54.
Horst, R., Thoai, N. V. and Devries, J. (1988), On Finding the New Vertices and Redundant Constraints in Cutting Plane Algorithms for Global Optimization,
Operations Research Letters 7, 85–90.
CrossRef55.
Thieu, N. V. (1988), A Finite Method for Globally Minimizing a Concave Function over an Unbounded Polyhedral Convex Set and Its Applications,
Acta Mathematica Hungarica 52, 21–36.
CrossRef56.
Chen, P. C., Hansen, P. and Jaumard, B. (1991), On-Line and Off-Line Vertex Enumeration by Adjacency Lists,
Operations Research Letters 10, 403–409.
CrossRef57.
Horst, R. (1991), On the Vertex Enumeration Problem in Cutting Plane Algorithms of Global Optimization, in G. Fandel and H. Gehring (eds.), Operations Research, Springer Verlag, Berlin/New York, pp. 13–22.
58.
Horst, R. and Thoai, N. V. (1989), Modification, Implementation and Comparison of Three Algorithms for Globally Solving Linearly Constrained Concave Minimization Problems,
Computing 42, 271–289.
CrossRef59.
Stadler, W., ed. (1988), Multicriteria Optimization in Engineering and the Sciences, Plenum Press, New York.
60.
Benson, H. P. (1982), Admissible Points of a Convex Polyhedron,
Journal of Optimization Theory and Applications 38, 341–361.
CrossRef61.
International Mathematical and Statistical Libraries, Inc. (1991), The IMSL Library Reference Manual, IMSL, Houston, Texas.