, Volume 17, Issue 3, pp 275-294

Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Responses to recent land-use changes and pollutant loading in the sediment of a hypertrophic lake in southern Sweden were studied by comparison of geochemical, pollen and magnetic records with historical land-use data. A chronology was constructed for the last two centuries by correlating changes in the pollen diagram to major events in the land-use history. Sediment accumulation was low (mean c. 0.2 g cm-2 yr-1) prior to 1800 AD, when less than 25% of the catchment was arable land. Reorganization of the agrarian system during the 19th century increased the annually tilled area by 300%, which accelerated soil erosion and substantially increased the accumulation of allochtonous matter in the lake. Since the turn of the century 90% of the catchment has been ploughed every year. The deposition of clastic matter in the lake has, however, decreased due to a gradual rerouting of the drainage system, which has reduced the effective catchment area by c. 85%.

Authigenic vivianite (Fe3(PO4)2.8H2O) is a major P phase in the preindustrial non-sulphidic sediments, which suggests that the sediments at that time served as a fairly efficient sink for P. The arable expansion, increased manuring and, eventually, the introduction of artificial fertilizers during the 19th century led to a massive influx of nutrients, which elevated primary production in the lake. Subsequent development of bottom water anoxia around 1900, in combination with an additional pollutant burden of sulphate within the lake basin, led to major alterations of the biogeochemical cycles. The most critical change in the post-1900 sediments involved the cycling of Fe and P. The linkage between the lacustrine P and Fe cycles can explain that FeS formation was paralleled by a release of P from the sedimentary pool. This supply of P to the lake basin must have supplemented the nutrient supply by modern agriculture and contributed to recent hypertrophication. The bacterial sulphate reduction also affected the generation of alkalinity which supported a significant calcite precipitation in the post-1900 sediments.

S is enriched 10-fold in the post-1900 sediments compared to preindustrial values. Along with the rise in S, soot particles derived from fossil fuel combustion appear in the sediments for the first time. Therefore, Bussj¨osj¨on is thought to be a good example of how a well-buffered, highly productive lake may respond to the pollution by sulphur from acid rain.