Barlow, H.B., Kaushal, T.P., and Mitchison, G.J. 1989. Finding minimum entropy codes.

*Neural Computation*, 1:412-423.

Google ScholarBergen, J.R. and Adelson, E.H. 1991. Theories of visual texture perception. In *Spatial Vision*, D. Regan (Eds.), CRC Press.

Besag, J. 1973. Spatial interaction and the statistical analysis of lattice systems (with discussion).

*J. Royal Stat. Soc.*,

*B*, 36:192- 236.

Google ScholarBesag, J. 1977. Efficiency of pseudolikelihood estimation for simple Gaussian fields.

*Biometrika*, 64:616-618.

Google ScholarChubb, C. and Landy, M.S. 1991. Orthogonal distribution analysis: A new approach to the study of texture perception. In *Comp. Models of Visual Proc.*, M.S Landy et al. (Eds.), MIT Press.

Coifman, R.R. and Wickerhauser, M.V. 1992. Entropy based algorithms for best basis selection.

*IEEE Trans. on Information Theory*, 38:713-718.

CrossRefGoogle ScholarCross, G.R. and Jain, A.K. 1983. Markov random field texture models.

*IEEE*,

*PAMI*, 5:25-39.

Google ScholarDaubechies, I. 1992. *Ten Lectures on Wavelets*, Society for Industry and Applied Math: Philadephia, PA.

Daugman, J. 1985. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. *Journal of Optical Soc. Amer.*, 2(7).

Diaconis, P. and Freedman, D. 1981. On the statistics of vision: The Julesz conjecture. *Journal of Math. Psychology*, 24.

Donoho, D.L. and Johnstone, I.M. 1994. Ideal de-noising in an orthonormal basis chosen from a libary of bases.

*Acad. Sci. Paris*,

*Ser. I*. 319:1317-1322.

Google ScholarField, D. 1987. Relations between the statistics of natural images and the response properties of cortical cells. *J. of Opt. Soc. Amer.*, 4(12).

Gabor, D. 1946. Theory of communication. *IEE Proc.*, 93(26).

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.

*IEEE Trans. PAMI*, 6:721-741.

Google ScholarGeman, S. and Graffigne, C. 1986. Markov random field image models and their applications to computer vision. In *Proc. Int. Congress of Math.*, Berkeley, CA.

Geyer, C.J. and Thompson, E.A. 1995. Annealing Markov chain Monto Carlo with applications to ancestral inference.

*J. of Amer. Stat. Assoc.*, 90:909-920.

Google ScholarHaralick, R.M. 1979. Statistics and structural approach to texture. In

*Proc. IEEE*, 67:786-804.

Google ScholarHeeger, D.J. and Bergen, J.R. 1995. Pyramid-based texture analysis/ synthesis. *Computer Graphics*, in press.

Jain, A.K. and Farrokhsia, F. 1991. Unsupervised texture segmentation using Gabor filters.

*Pattern Recognition*, 24:1167-1186.

CrossRefGoogle ScholarJaynes, E.T. 1957. Information theory and statistical mechanics.

*Physical Review*, 106:620-630.

CrossRefGoogle ScholarJulesz, B. 1962. Visual pattern discrimination.

*IRE Trans. of Information Theory*, IT-8:84-92.

CrossRefGoogle ScholarKullback, S. and Leibler, R.A. 1951. On information and sufficiency.

*Annual Math. Stat.*, 22:79-86.

Google ScholarLee, T.S. 1992. Image representation using 2D Gabor wavelets. To appear in *IEEE Trans. of Pattern Analysis and Machine Intelligence*.

Mallat, S. 1989. Multiresolution approximations and wavelet orthonormal bases of

*L*
^{2}.

*R*/.

*Trans. Amer. Math. Soc.*, 315:69-87.

Google ScholarMao, J. and Jain, A.K. 1992. Texture classification and segmentation using multiresolution simultaneous autoregressive models.

*Pattern Recognition*, 25:173-188.

CrossRefGoogle ScholarMcCormick, B.H. and Jayaramamurthy, S.N. 1974. Time series models for texture synthesis.

*Int. J. Comput. Inform. Sci.*, 3:329-343.

Google ScholarPopat, K. and Picard, R.W. 1993. Novel cluster-based probability model for texture synthesis, classification, and compression. In *Proc. SPIE Visual Comm.*, Cambridge, MA.

Qian, W. and Titterington, D.M. 1991. Multidimensional Markov chain models for image textures.

*J. Royal Stat. Soc., B*, 53:661-674.

Google ScholarSilverman, M.S., Grosof, D.H., De Valois, R.L., and Elfar, S.D. 1989. Spatial-frequency organization in primate striate cortex. In *Proc. Natl. Acad. Sci. U.S.A.*, 86.

Simoncelli, E.P., Freeman, W.T., Adelson, E.H., and Heeger, D.J. 1992. Shiftable multiscale transforms.

*IEEE Trans. on Information Theory*, 38:587-607.

CrossRefGoogle ScholarTsatsanis, M.K. and Giannakis, G.B. 1992. Object and texture classification using higher order statistics.

*IEEE Trans on PAMI*, 7:733-749.

Google ScholarWinkler, G. 1995. *Image Analysis, Random Fields and dynamic Monte Carlo Methods*, Springer-Verlag.

Witkin, A. and Kass, M. 1991. Reaction-diffusion textures.

*Computer Graphics*, 25:299-308.

Google ScholarYuan, J. and Rao S.T. 1993. Spectral estimation for random fields with applications to Markov modeling and texture classification. *Markov Random Fields*, Chellappa and Jain (Eds.), pp. 179- 209.

Zhu, S.C. and Yuille, A.L. 1996. Region Competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. *IEEE Trans. on PAMI*, 18(9).

Zhu, S.C., Wu, Y.N., and Mumford, D.B. 1996. Minimax entropy principle and its applications. Harvard Robotics Lab. Technique Report.