, Volume 17, Issue 1-6, pp 303-312

Effects of 17β-estradiol and 4-nonylphenol on smoltification and vitellogenesis in Atlantic salmon (Salmo salar)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The impact of 17β-estradiol (E2) and the putative estrogenic compound, 4-nonylphenol (4-NP), on smoltification and vitellogenesis in Atlantic salmon (Salmo salar) was investigated during a 30 day period starting late April. Three groups of fresh water (FW) fish (1 year old, mixed sexes, average weight 23 g) were injected once a week with 50 µg (0.18 µmol) 17β-estradiol, 3 mg (13.6 µmol) 4-nonylphenol dissolved in peanut oil, or peanut oil alone as control. Every ten days, subgroups were challenged with 28 ppt seawater (SW) for 24h, and sampled together with subgroups of FW fish. Treatment effects were examined on vitellogenic and osmoregulatory parameters. E2 and 4-NP treatment increased the total calcium and protein level in plasma and the hepatosomatic index of FW fish, both indicating an activated vitellogenesis in the liver. The presence of vitellogenin in the plasma of 4-NP- and E2-treated groups was further indicated by the appearance of a high molecular weight vitellogenin band (550 kDa) in electropherograms produced by native gel electrophoresis. This band appeared in exactly the same position in both the E2- and the 4-NP-treated groups but could not be detected in controls. During the 30 day treatment period, control fish approached the peak of smoltification, as indicated by a distinct silvery appearance, decreasing condition factor, increasing levels of gill Na+,K+-ATPase and improved hypoosmoregulatory performance in the SW-challenge test. Both E2 and 4-NP treatments significantly inhibited the progress of smoltification, as judged by a significant reduction of gill Na+,K+-ATPase activity, relative α-subunit Na+,K+-ATPase mRNA expression, gill chloride cell density and a poorer hypoosmoregulatory performance of treated fish. The impaired SW-tolerance of E2- and 4-NP-treated fish was strongly correlated with a decreased gill Na+,K+-ATPase activity. Despite a difference in relative potency, the present study shows that 4-nonylphenol and 17β-estradiol may have qualitatively similar inhibitory effects on smoltification and hypoosmoregulatory physiology of Atlantic salmon. Both 4-NP and E2 activated the vitellogenic system, and the study supports the hypothesis that sexual maturation and smoltification are antagonistic, developmental phenomena in salmon. It is suggested that the presence of estrogenic compounds in the environment may negatively influence smoltification and migration in wild stocks of salmon.