, Volume 56, Issue 1-2, pp 17-38

Alternative Ways to Become a Juvenile or a Definitive Phenotype (and on Some Persisting Linguistic Offenses)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Lack of knowledge of early and juvenile development often makes it difficult to decide when a fish becomes a juvenile or, for that matter, a definitive phenotype. According to the established life-history model, a fish develops naturally in a saltatory manner, its entire life consisting of a sequence of stabilized self-organizing steps, separated by distinct less stabilized thresholds. Changes are usually introduced during thresholds. In principle, there are two ways to reach the juvenile period: by indirect or by direct development. Indirectly developing fishes have a distinct larva period that ends in a cataclysmic or mild remodeling process, called metamorphosis, from which the fishes emerge as juveniles. During metamorphosis, most temporary organs and structures of the embryos and larvae are replaced by definitive organs and structures that are also possessed by the adults. In contrast, directly developing fishes have no larvae. Their embryos develop directly into juveniles and do not need major remodeling. Consequently, the beginning of their juvenile period is morphologically and functionally less distinct than in indirect development. The life-history model helps to find criteria that identify the natural boundaries between the different periods in the life of a fish, among them, the beginning of the juvenile period. Looking at it from a different angle, when ontogeny progresses from small eggs with little yolk, larvae are required as the necessary providers of additional nutrients (‘feeding entities’ similar to amphibian tadpoles or butterfly caterpillars) in order to accumulate materials for the metamorphosis into the definitive phenotypes. Directly developing fishes start with large demersal eggs provided with an adequate volume of high density yolk and so require no or little external nutrients to develop into the definitive phenotype. These large eggs are released and develop in concentrated clutches. It therefore becomes possible and highly effective to guard them in nests or bear them in external pouches, gill chambers or the buccal cavity. Viviparity is the next natural step. Now the maternal investment into large yolks can be supplemented or replaced by direct food supply to the developing embryos like, for example, the secretion of uterine histotrophe or nutrient transfer via placental analogues. When the young of guarders and bearers start exogenous feeding, they are much larger or better developed than larvae of nonguarders and the larva period in the former is reduced to a vestige or eliminated entirely. In the latter case, the juvenile period begins with the first exogenous feeding. Such precocial fishes are more specialized and able to survive better in competitive environments. In contrast, altricial forms retain or revert to a life-history style with indirect development and high fecundity when dispersal is advantageous or essential. Fishes become juveniles when the definitive phenotype is formed in most structures, either indirectly from a larva via metamorphosis or directly from the embryo.