Letters in Mathematical Physics

, Volume 45, Issue 1, pp 1–9

Quantum Double for Quasi-Hopf Algebras


  • S. Majid
    • Department of MathematicsHarvard University, Science Center
    • Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge

DOI: 10.1023/A:1007450123281

Cite this article as:
Majid, S. Letters in Mathematical Physics (1998) 45: 1. doi:10.1023/A:1007450123281


We introduce a quantum double quasi-triangular quasi-Hopf algebra D(H) associated to any quasi-Hopf algebra H. The algebra structure is a cocycle double cross-product. We use categorical reconstruction methods. As an example, we recover the quasi-Hopf algebra of Dijkgraaf, Pasquier and Roche as the quantum double Dφ(G) associated to a finite group G and group 3-cocycle φ.

quantum doublequasi-Hopf algebrafinite groupcocyclecategoryreconstruction.

Copyright information

© Kluwer Academic Publishers 1998