, Volume 50, Issue 1, pp 85-103

Distribution and microhabitat use by flatfishes in a Louisiana estuary

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We used a 1 m beam trawl to characterize microhabitat use of flatfishes in monthly samples collected in Barataria Bay, Louisiana. Six strata were established along a salinity gradient from the nearshore zone along the Gulf of Mexico to approximately 30 km inland. Randomized sampling within strata characterized flatfish distributions and environmental conditions throughout the bay. Microhabitats were characterized by salinity, temperature, dissolved oxygen, depth, distance from shore, and substrate type. In 594 short-duration, beam-trawl samples collected from October 1992 through September 1994, we identified seven flatfish species from 7046 specimens, most of which were juveniles. Four species accounted for 98.3% of all flatfishes. The two most abundant, offshore tonguefish and bay whiff, were euryhaline and widely distributed over the salinity gradient; however, offshore tonguefish were concentrated in the lowermost stratum where bay whiff were uncommon. The third species, fringed flounder, was more abundant in middle and lower bay strata at higher salinities. The fourth species, blackcheek tonguefish, was most common in middle and upper bay strata and declined in abundance in coastal strata. A rotated factor analysis resolved six environmental variables into three major axes that explained 69 percent of the variance and were characterized as seasonal, depth-distance, and substrate-salinity axes. Separation of species and life history intervals in three-dimensional factor space reflected temporal and spatial segregation. Within the four common flatfishes, 14 of 24 variable comparisons showed clear ontogenetic trends in which at least two size-class means differed significantly. Among the common species, temporal differences were reflected by mean temperatures and dissolved oxygen concentrations and spatial differences were reflected by other environmental variables, including depth, distance, substrate, and salinity.

This revised version was published online in July 2006 with corrections to the Cover Date.