1.

Z.P. Bažant, Scaling of quasibrittle fracture: Asymptotic analysis.

*International Journal of Fracture* 83 (1996) 19–40.

CrossRef2.

B.B. Mandelbrot, D.E. Passoja and A. Paullay, Fractal character of fracture surfaces of metals.

*Nature* 308 (1984) 721–722.

CrossRefADS3.

S.R. Brown, A note on the description of surface roughness using fractal dimension.

*Geophysical Res. Letters* 14(11) (1987) 1095–1098, and 15 (11) (1987) 286.

ADS4.

H. Xie, Th7e fractal effect of irregularity of crack branching on the fracture toughness of brittle materials. *International Journal of Fracture* 41 (1987) 267–274.

5.

J.J. Mecholsky and T.J. Mackin, Fractal analysis of fracture in ocala chert.

*Journal of Materials Science and Letters* 7 (1988) 1145–1147.

CrossRef6.

R. Cahn, Fractal dimension and fracture. *Nature* 338 (Mar.) (1989) 201–202.

7.

C.T. Chen and J. Runt, Fractal analysis of polystyrene fracture surfaces. *Polymer Communications* 30 (Nov.) (1989) 334–335.

8.

E. Hornbogen, Fractals in microstructure of metals.

*International Materials Review* 6 (1989) 277–296.

ADS9.

H. Xie, Studies on fractal models of microfractures of marble. *Chinese Science Bulletin* 34 (1989) 1292–1296.

10.

G. Peng and D. Tian, The fractal nature of a fracture surface.

*Journal of Physics A: Mathematics and General* 23 (1990) 3257–3261.

CrossRefADS11.

V.C. Saouma, C. Barton and N. Gamal-el-Din, Fractal characterization of concrete crack surfaces. *Engineering Fracture Mechanics* 35(1) (1990).

12.

E. Bouchaud, G. Lapasset and J. Planes, Fractal dimension of fractured surfaces: a universal value?

*Europhysics Letters* 13(1) (1990) 73–79.

ADS13.

T. Chelidze and Y. Gueguen, Evidence of fractal fracture.

*International Journal of Rock Mechanics and Mininig Sciences* 27(3) (1990) 223–225.

CrossRef14.

Q.Y. Long, L. Suquin and C.W. Lung, Studies of fractal dimension of a fracture surface formed by slow stable crack propagation. *Journal of Physics* 24(4) (1991).

15.

M.A. Issa, A.M. Hammad and A. Chudnovsky, Fracture surface characterization of concrete. *Proc., 9th ASCE Conference on Engineering Mechanics*, ASCE, N.Y. (1992).

16.

K. Måløy, A. Hansen, E. Hinrichsen and S. Roux, Experimental measurement of the roughness of brittle cracks.

*Physical Review Letters* 68(2) (1992) 213–215.

CrossRefADS17.

A.B. Mosolov and F.M. Borodich, Fractal fracture of brittle bodies under compression (in Russian).

*Doklady Akademii Nauk* 324(3) (1992) 546–549.

MathSciNet18.

F. Borodich, Fracture energy of fractal crack, propagation in concrete and rock (in Russian). *Doklady Akademii Nauk* 325(6) (1992) 1138–1141.

19.

D.A. Lange, H.M. Jennings and S.P. Shah, Relationship between fracture surface roughness and fracture behavior of cement paste and mortar.

*Journal of American Ceramic Society* 76(3) (1993) 589–597. J. Lemaitre and J.-L. Chaboche,

*Mechanics of Solid Materials*. Cambridge University Press, Cambridge, U.K. (1990).

CrossRef20.

H. Xie, *Fractals in Rock Mechanics*. Balkema, Rotterdam (1993).

21.

A. Carpinteri, B. Chiaia and G. Ferro, Multifractal scaling law for the nominal strength variation of concrete structures. In *Size Effect in Concrete Structures* (Proc., Japan Concrete Institute International Workshop, held in Sendai, Japan, 1993), ed. by M. Mihashi, H. Okamura and Z.P. Bažant, E. and F.N. Spon, London-New York (1994) 193–206.

22.

H. Xie, D.J. Sanderson and D.C.P. Peacock, A fractal model and energy dissipation for en echelon fractures.

*Engineering Fracture Mechanics* 48(5) (1994) 665–662.

ADS23.

V.C. Saouma and C.C. Barton, Fractals, fracture and size effect in concrete.

*ASCE Journal of Engineering Mechanics* 120(4) (1994) 835–854.

CrossRef24.

A. Carpinteri, Fractal nature of material microstructure and size effects on apparent mechanical properties.

*Mechanics of Materials* 18 (1994) 89–101.

CrossRef25.

A. Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials.

*International Journal of Solids and Structures* 31 (1994) 291–302.

MATHCrossRef26.

A. Carpinteri and G. Ferro, Size effect on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure. *Materials and Structures* 27 (1994) 563–571.

27.

A. Carpinteri, B. Chiaia and G. Ferro, Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. *Materials and Structures* 28(7) (1995), 311–317.

28.

A. Carpinteri, B. Chiaia and G. Ferro, Multifractal scaling for the nominal strength variation of concrete structures. In *Size Effect in Concrete Structures*, (Proc. of JCI Intern. Workshop, held in Sendai), ed. by H. Mihashi, H. Okamura and Z.P. Bažant, E. and F.N. Spon, London, 193–206.

29.

A. Carpinteri, G. Ferro and S. Intervenizzi. In *Fracture Mechanics of Concrete Structures* (Proceedings of FraMCoS-2, held at E.T.H., Zürich), ed. by F.H. Wittmann, Aedificatio Publishers, Freiburg, Germany (1995) 557–570.

30.

A. Carpinteri and B. Chiaia. In *Fracture Mechanics of Concrete Structures* (Proceedings of FraMCoS-2, held at E.T.H., Zürich), ed. by F.H. Wittmann, Aedificatio Publishers, Freiburg (1995) 581–596.

31.

N.-Q. Feng, X.-H. Ji, Q.-F. Zhuang and J.-T. Ding, A fractal study of the size effect of concrete fracture energy. In *Fracture Mechanics of Concrete Structures*, Vol. 1 (Proc., 2nd Int. Conf. on Fracture Mech. of Concrete Structures (FraMCoS-2), held at ETH, Zürich), ed. by F.H. Wittmann, Aedificatio Publishers, Freiburg, Germany (1995) 597–606.

32.

M.C. Bender and S.A. Orszag,

*Advanced Mathematical Methods for Scientists and Engineers*, McGraw Hill, New York (1978) (Chapters 9–11).

MATH33.

G.I. Barenblatt,

*Similarity, Self-Similarity and Intermediate Asymptotics*. Consultants Bureau, New York, N.Y. (1979).

MATH34.

Z.P. Bažant, *Is Size Effect Caused by Fractal Nature of Crack Surfaces?*, Report No. 94-10/402i, Department of Civil Engineering, Northwestern University, Evanston, Illinois (1994).

35.

Z.P. Bažant, *Can scaling of structural failure be explained by fractal nature of cohesive fracture?* Appendix to a paper by Bažant and Li in *Size-Scale Effects in the Failure Mechanisms of Materials and Structures* (Proc., IUTAM Symposium, held at Politecnico di Torino, Italy, Oct. 1994), ed. by A. Carpinteri, E. and F.N. Spon, London, 284–289 (1996).

36.

Z.P. Bažant, Scaling theories for quasibrittle fracture: Recent advances and new directions, in *Fracture Mechanics of Concrete Structures* (Proc., FraMCoS-2, held at E.T.H., Zürich) (1995) 515–534.

37.

Z.P. Bažant, Scaling of quasibrittle fracture and the fractal question,

*ASME Journal of Materials and Technology* 117 (1995), 361–367 (Materials Division Special 75th Anniversary Issue).

CrossRef38.

A.C. Palmer and J.O. Sanderson, Fractal crushing of ice and brittle solids.

*Proceedings of the Royal Society London* 433 (1991) 469–477.

MATHADS39.

S.U. Bhat, Modeling of size effect in ice mechanics using fractal concepts. *Journal of Offshore Mechanics and Arctic Engineering* 112 (1990) 370–376.

40.

Z.P. Bažant and L. Cedolin,

*Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories*, Oxford University Press, New York (1991).

MATH41.

Z.P. Bažant, Fracture in concrete and reinforced concrete. In *Mechanics of Geomaterials: Rocks, Concretes, Soils* (Preprints, IUTAM Prager Symposium held at Northwestern University, ed. by Z.P. Bažant, Evanston, Illinois), (1983) 281–317.

42.

Z.P. Bažant, Size effect in blunt fracture: Concrete, rock, metal.

*ASCE Journal of Engineering Mechanics* 110 (1984) 518–535.

CrossRef43.

ACI Committee 446, Fracture Mechanics (Z.P. Bažant, Chairman and Princ. Author) (1992). *Fracture mechanics of concrete: Concepts, models and determination of material properties*. Special publication, ACI 446, IR-91, American Concrete Institute, Detroit, MI., 1991 (146 pp.); reprinted in *Fracture Mechanics of Concrete Structures*, ed. by Z.P. Bažant, Elsevier, London, 1–140.

44.

Z.P. Bažant, J. Ožbolt and R. Eligehausen. Fracture size effect: review of evidence for concrete structures.

*Journal of Structural Engineering ASCE* 120(8) (1994) 2377–2398.

CrossRef45.

Z.P. Bažant and M.T. Kazemi, Size effect on diagonal shear failure of beams without stirrups. *ACI Structural Journal* 88 (1991) 268–276.

46.

P. Marti, Size effect in double-punch tests on concrete cylinders. *ACI Materials Journal* 86,No. 6 (1989) 597–601.

47.

W. Weibull, Phenomenon of rupture in solids. *Ingenioersvetenskaps Akad. Handl.* 153 (1939) 1–55.

48.

Z.P. Bažant, Y. Xi and S.G. Reid, Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable? *ASCE Journal of Engineering Mechanics* 117(11) (1991) 2609–2622.

49.

Z.P. Bažant and Y. Xi, Statistical size effect in quasi-brittle structures: II. Nonlocal theory. *ASCE Journal of Engineering Mechanics* 117(11) (1991) 2623–2640.

50.

P.E. Petersson, *Crack growth and development of fracture zones in plain concrete and similar materials* (Report TVBM-1006), Division of Building Materials, Lund Institute of Technology, Lund, Sweden (1991).

51.

T. Hasegawa, T. Shioya and T. Okada, Size effect on splitting tensile strength of concrete. *Proc. 7th Conference of Japan Concrete Institute* (1985) 305–312.

52.

H. Xie and D.J. Sanderson, Fractal effect of crack propagation on dynamic stress intensity factors and crack velocities.

*International Journal of Fracture* 74 (1995) 29–42.

CrossRef