Letters in Mathematical Physics

, Volume 42, Issue 4, pp 349-361

First online:

Krichever Maps, Faà di Bruno Polynomials, and Cohomology in KP Theory

  • Gregorio FalquiAffiliated withSISSA/ISAS
  • , Cesare ReinaAffiliated withSISSA/ISAS
  • , Alessandro ZampaAffiliated withSISSA/ISAS

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We study the geometrical meaning of the Faà di Bruno polynomials in the context of KP theory. They provide a basis in a subspace W of the universal Grassmannian associated to the KP hierarchy. When W comes from geometrical data via the Krichever map, the Faà di Bruno recursion relation turns out to be the cocycle condition for (the Welters hypercohomology group describing) the deformations of the dynamical line bundle on the spectral curve together with the meromorphic sections which give rise to the Krichever map. Starting from this, one sees that the whole KP hierarchy has a similar cohomological meaning.

KP hierarchy Faà di Bruno pdynomials hypercohomology groups.