, Volume 170, Issue 1-2, pp 131-138

Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Tocotrienols from palm oil showed significant ability to inhibit oxidative damage induced by ascorbate-Fe2+ and photosensitization, involving different mechanisms, in rat liver microsomes. The tocotrienol-rich fraction from palm oil (TRF), being tried as a more economical and efficient substitute for α-tocopherol, showed time- and concentration-dependent inhibition of protein oxidation as well as lipid peroxidation. It was more effective against protein oxidation. The extent of inhibition by TRF varied with different peroxidation products such as conjugated dienes, lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Among the constituents of TRF, γ-tocotrienol was the most effective followed by its α- and δ-isomers. In general, at a low concentration of 5 μM, TRF was able to prevent oxidative damage to significant extent (37% inhibition of protein oxidation and 27–30% of lipid peroxidation at 1 h of incubation). The protective ability of TRF (30.1% at 5 μM with TBARS formation) was significantly higher than that of the dominant form of vitamin E, α-tocopherol (16.5% under same conditions). Hence our studies indicate that this fraction from palm oil can be considered as an effective natural antioxidant supplement capable of protecting cellular membranes against oxidative damage.