Skip to main content
Log in

Viscosity Measurements on Gaseous Argon, Krypton, and Propane1

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new vibrating-wire viscometer was designed to perform quasi-absolute measurements of very high precision on gases. It was applied to determine the viscosity of argon at temperatures of 298.15, 348.15, and 423.15 K and pressures up to 20 MPa, and the viscosity of krypton at 298.15 and 348.15 ,K and pressures up to 16 MPa. Furthermore, several isothermal series of viscosity measurements on gaseous propane were carried out. The subcritical isotherms at 298.15, 323.15, 348.15, and 366.15 K were restricted to 95% of the saturated vapor pressure, the supercritical isotherms at 373.15, 398.15, and 423.15 K to 20 MPa. In general, the measurements are characterized by a reproducibility of ±0.05% and an accuracy of ±0.2%. However, close to the critical point an accuracy of ±3% has to be accepted, mainly due to the uncertainty of the density. In this context the influence of the equation of state used for propane is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Kestin and W. Leidenfrost, Physica 25:1033 (1959).

    Google Scholar 

  2. H. R. van den Berg, Precisiemetingen aan de Viscositeitscoefficient van Krypton en de logarithmische Term in de Dichtheidsontwikkeling, Ph.D. thesis (University of Amsterdam, 1979).

  3. J. Wilhelm, E. Vogel, J. K. Lehmann, and W. A. Wakeham, Int. J. Thermophys. 19:391 (1998).

    Google Scholar 

  4. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989).

    Google Scholar 

  5. V. A. Rabinovich, A. A. Vasserman, V. I. Nedustup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, National Standard Reference Data Service of the USSR, Vol. 10 (Hemisphere Publishing, New York, 1988).

    Google Scholar 

  6. R. Span and W. Wagner, to be submitted to Int. J. Thermophys.

  7. T. Retsina, S. M. Richardson, and W. A. Wakeham, Appl. Sci. Res. 43:325 (1987).

    Google Scholar 

  8. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  9. J. Kestin, E. Paycoc, and J. V. Sengers, Physica 54:1 (1971).

    Google Scholar 

  10. E. Vogel, Ber. Bunsenges. Phys. Chem. 88:997 (1984).

    Google Scholar 

  11. R. A. Aziz and M. J. Slaman, J. Chem. Phys. 92:1030 (1990).

    Google Scholar 

  12. R. A. Aziz and M. J. Slaman, Chem. Eng. Comm. 78:153 (1989).

    Google Scholar 

  13. N. J. Trappeniers, A. Botzen, J. van Oosten, and H. R. van den Berg, Physica 31:945 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, J., Vogel, E. Viscosity Measurements on Gaseous Argon, Krypton, and Propane1 . International Journal of Thermophysics 21, 301–318 (2000). https://doi.org/10.1023/A:1006667125801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006667125801

Navigation