, Volume 64, Issue 2-3, pp 155-166

Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6 f complexes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A biochemical and structural analysis is presented of fractions that were obtained by a quick and mild solubilization of thylakoid membranes from spinach with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by a partial purification using gel filtration chromatography. The largest fractions consisted of paired, appressed membrane fragments with an average diameter of about 360 nm and contain Photosystem II (PS II) and its associated light-harvesting antenna (LHC II), but virtually no Photosystem I, ATP synthase and cytochrome b 6 f complex. Some of the membranes show a semi-regular ordering of PS II in rows at an average distance of about 26.3 nm, and from a partially disrupted grana membrane fragment we show that the supercomplexes of PS II and LHC II represent the basic structural unit of PS II in the grana membranes. The numbers of free LHC II and PS II core complexes were very high and very low, respectively. The other macromolecular complexes of the thylakoid membrane occurred almost exclusively in dispersed forms. Photosystem I was observed in monomeric or multimeric PS I-200 complexes and there are no indications for free LHC I complexes. An extensive analysis by electron microscopy and image analysis of the CF0F1 ATP synthase complex suggests locations of the δ (on top of the F1 headpiece) and ∈ subunits (in the central stalk) and reveals that in a substantial part of the complexes the F1 headpiece is bended considerably from the central stalk. This kinking is very likely not an artefact of the isolation procedure and may represent the complex in its inactive, oxidized form.

This revised version was published online in June 2006 with corrections to the Cover Date.