1.

Adler, R., Feldman, R. and Taggu, M. (eds.): *A Practical Guide to Heavy Tails*, Birkhäuser, 1998

2.

Alt, H., Guibas, L., Mehlhorn, K., Karp, R. and Wigderson, A.: A method for obtaining randomized algorithms with small tail probabilities,

*Algorithmica*
**16**(4–5) (1996), 543–547.

Google Scholar3.

Anderson, L.: Completing partial latin squares,

*Math. Fys. Meddelelser*
**41** (1985), 23–69.

Google Scholar4.

Bayardo, R.: Personal communications, 1999.

5.

Bayardo, R. and Miranker, D.: A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem, in *Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96)*, Portland, OR, 1996, pp. 558–562.

6.

Bayardo, R. and Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances, in *Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97)*, New Providence, RI, 1997, pp. 203–208.

7.

Brelaz, D.: New methods to color the vertices of a graph,

*Comm. ACM*
**22**(4) (1979), 251–256.

Google Scholar8.

Colbourn, C.: Embedding partial Steiner triple systems is NP-complete,

*J. Combin. Theory A*
**35** (1983), 100–105.

Google Scholar9.

Cook, S. and Mitchell, D.: Finding hard instances of the satisfiability problem: A survey, in Du, Gu, and Pardalos (eds), *Satisfiability Problem: Theory and Applications*, Dimacs Series in Discrete Math. and Theoret. Comput. Sci. 35, 1998.

10.

Crato, N., Gomes, C. and Selman, B.: On estimating the index of stability with truncated data, Manuscript in preparation.

11.

Crawford, J. and Baker, A.: Experimental results on the application of satisfiability algorithms to scheduling problems, in *Proceedings of The Tenth National Conference on Artificial Intelligence (AAAI-94)*, Austin, TX, 1994, pp. 1092–1098.

12.

Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving,

*Comm. ACM*
**5** (1979), 394–397.

Google Scholar13.

Davis, M. and Putman, H.: A computing procedure for quantification theory,

*J. ACM*
**7** (1960), 201–215.

Google Scholar14.

Denes, J. and Keedwell, A.:

*Latin Squares and Their Applications*, Akademiai Kiado, Budapest, and English Universities Press, 1974.

Google Scholar15.

Ertel, W. and Luby, M.: Optimal parallelization of Las Vegas algorithms, in *Symp. on Theoretical Aspects of Computer Science*, Lecture Notes in Comput. Sci. 775, 1994, pp. 463–475.

16.

Feller,W.:

*An Introduction to Probability Theory and Its Applications*, Vol. I, Wiley, New York, 1968.

Google Scholar17.

Feller, W.:

*An Introduction to Probability Theory and Its Applications*, Vol. II, Wiley, New York, 1971.

Google Scholar18.

Frost, D., Rish, I. and Vila, L.: Summarizing CSP hardness with continuous probability distributions, in *Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97)*, New Providence, RI, 1997, pp. 327–334.

19.

Fujita, M., Slaney, J. and Bennett, F.: Automatic generation of some results in finite algebra, in *Proceedings of the International Joint Conference on Artificial Intelligence*, France, 1993, pp. 52–57.

20.

Gent, I. and Walsh, T.: Easy problems are sometimes hard,

*Artif. Intell.*
**70** (1993), 335–345.

Google Scholar21.

Gomes, C. P. and Selman, B.: Algorit portfolio design: Theory vs. practice, in *Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97)*, Providence, RI, 1997, pp. 190–197.

22.

Gomes, C. P. and Selman, B.: Problem structure in the presence of perturbations, in *Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97)*, New Providence, RI, 1997, pp. 221–227.

23.

Gomes, C. P., Selman, B. and Crato, N.: Heavy-tailed distributions in combinatorial search, in G. Smolka (ed.),

*Principles and Practice of Constraint Programming (CP97)*, Lecture Notes in Comput. Sci., Linz, Austria, 1997, pp. 121–135.

Google Scholar24.

Hall, P.: On some simple estimates of an exponent of regular variation,

*J. Roy. Statist. Soc.*
**44** (1982), 37–42.

Google Scholar25.

Hayes, B.: Computer science: Can't get no satisfaction,

*American Scientist*
**85**(2) (1996), 108–112.

Google Scholar26.

Hill, B.: A simple general approach to inference about the tail of a distribution,

*Ann. Statist.*
**3** (1975), 1163–1174.

Google Scholar27.

Hogg, T., Huberman, B. and Williams, C. (eds.): Phase transitions and complexity (Special Issue), *Artif. Intell.*
**81**(1–2) (1996).

28.

Hogg, T. and Williams, C.: Expected gains from parallelizing constraint solving for hard problems, in *Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94)*, Seattle, WA, 1994, pp. 1310–1315.

29.

Hoos, H.: Stochastic local search-methods, models, applications, Ph.D. Thesis, TU Darmstadt, 1998.

30.

Huberman, B., Lukose, R. and Hogg, T.: An economics approach to hard computational problems,

*Science*
**275** (1993), 51–54.

Google Scholar31.

Johnson, D.: A theoretician's guide to the experimental analysis of algorithms, Preliminary manuscript. Invited talk presented at AAAI-96, Portland, OR, 1996.

32.

Johnson, D. and Trick,M.: Cliques, coloring, and satisfiability: Second dimacs implementation challenge, in Dimacs Series in Discrete Math. and Theoret. Comput. Sci. 36, 1996.

33.

Kamath, A., Karmarkar, N., Ramakrishnan, K. and Resende, M.: Computational experience with an interior point algorithm on the satisfiability problem, in *Proceedings of Integer Programming and Combinatorial Optimization*, Waterloo, Canada, 1990, pp. 333–349.

34.

Kautz, H. and Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search, in *Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96)*, Portland, OR, 1996, pp. 1188–1194.

35.

Kirkpatrick, S. and Selman, B.: Critical behavior in the satisfiability of random Boolean expressions,

*Science*
**264** (1994), 1297–1301.

Google Scholar36.

Kwan, A.: Validity of normality assumption in CSP research, in *Proceedings of the Pacific Rim International Conference on Artificial Intelligence*, 1995, pp. 459–465.

37.

Lam, C., Thiel, L. and Swiercz, S.: The non-existence of finite projective planes of order 10,

*Canad. J. Math.*
**XLI**(6) (1994), 1117–1123.

Google Scholar38.

Li, C. M.: Personal communications, 1999.

39.

Li, C. M. and Anbulagan: Heuristics based on unit propagation for satisfiability problems, in *Proceedings of the International Joint Conference on Artificial Intelligence*, 1997, pp. 366–371.

40.

Luby, M., Sinclair, A. and Zuckerman, D.: Optimal speedup of Las Vegas algorithms, *Inform. Process. Lett.*, 1993, pp. 173–180.

41.

Macready, W., Siapas, A. and Kauffman, S.: Criticality and parallelism in combinatorial optimization,

*Science*
**271** (1996), 56–59.

Google Scholar42.

Mandelbrot, B.: The Pareto-Lévy law and the distribution of income,

*Internat. Econom. Rev.*
**1** (1960), 79–106.

Google Scholar43.

Mandelbrot, B.: The variation of certain speculative prices,

*J. Business*
**36** (1963), 394–419.

Google Scholar44.

Mandelbrot, B.:

*The Fractal Geometry of Nature*, Freeman, New York, 1983

Google Scholar45.

McAloon, K., Tretkoff, C. and Wetzel, G.: Sports league scheduling, in *Proceedings of Third Ilog International Users Meeting*, 1997.

46.

Mitchell, D. and Levesque, H.: Some pitfalls for experimenters with random SAT,

*Artif. Intell.*
**81**(1–2) (1996), 111–125.

Google Scholar47.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B. and Troyansky, L.: Determining computational complexity from characteristic 'phase transitions',

*Nature*
**400**(8) (1999), 133–137.

Google Scholar48.

Nemhauser, G. and Trick, M.: Scheduling a major college basketball conference,

*Oper. Res.*
**46**(1) (1998), 1–8.

Google Scholar49.

Niemela, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ext. version of paper presented at the *Workshop on Computational Aspects of Nonmonotonic Reasoning*, 1998.

50.

Niemela, I.: Personal communications, 1999.

51.

Nolan, J.: Stable distributions, Manuscript, in preparation, 1999.

52.

Prosser, P.: Hybrid algorithms for the constraint satisfaction problem,

*Comput. Intell.*
**9**(3) (1993), 268–299.

Google Scholar53.

Puget, J. F. and Leconte, M.: Beyond the black box: Constraints as objects, in *Proceedings of ILPS'95*, Lisbon, Portugal, 1995, pp. 513–527.

54.

Regin, J. C.: A filtering algorithm for constraints of difference in CSP, in *Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94)*, Seattle, WA, 1994, pp. 362–367.

55.

Rish, I. and Frost, D.: Statistical analysis of backtracking on inconsistent CSPs, in *Proceedings of Third International Conference on Principles and Practices of Constraint Programming*, 1997, pp. 150–162.

56.

Samorodnitsky, G. and Taqqu, M.: *Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance*, Chapman and Hall, 1994.

57.

Selman, B., Kautz, H. and Cohen, B.: Local search strategies for satisfiability testing, in D. Johnson and M. Trick (eds), Dimacs Series in Discrete Math. and Theoret. Comput. Sci. 26, 1993, pp. 521–532.

58.

Selman, B. and Kirkpatrick, S.: Finite-size scaling of the computational cost of systematic search,

*Artif. Intell.*
**81**(1–2) (1996), 273–295.

Google Scholar59.

Shaw, P., Stergiou, K. and Walsh, T.: Arc consistency and quasigroup completion, in *Proceedings of ECAI-98, Workshop on Binary Constraints*, 1998.

60.

Shonkwiler, R., E. and van Vleck, E.: Parallel speedup of Monte Carlo methods for global optimization,

*J. Complexity*
**10** (1994), 64–95.

Google Scholar61.

Slaney, J., Fujita, M. and Stickel, M.: Automated reasoning and exhaustive search: Quasigroup existence problems,

*Comput. Math. Appl.*
**29** (1995), 115–132.

Google Scholar62.

Smith, B. and Grant, S.: Sparse constraint graphs and exceptionally hard problems, in *Proceedings of the International Joint Conference on Artificial Intelligence*, 1995, pp. 646–651.

63.

Stickel, M.: Personal communications, 1998.

64.

Vandengriend and Culberson: The

*Gnm* phase transition is not hard for the Hamiltonian cycle problem,

*J. Artif. Intell. Res.*
**9** (1999), 219–245.

Google Scholar65.

Walsh, T.: Search in a small world, in *Proceedings of the International Joint Conference on Artificial Intelligence*, Stockholm, Sweden, 1999

66.

Zolotarev, V.: *One-Dimensional Stable Distributions*, Transl. Math. Monographs 65, Amer. Math. Soc., 1986. Translation from the original 1983 Russian ed.