, Volume 38, Issue 3, pp 449-460

Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Levels of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and polygalacturonase (PG) mRNAs were characterized during ripening of Royal Gala, Braeburn and Granny Smith apples. Both ACC-oxidase and PG mRNAs were up-regulated in ripening fruit of all three cultivars. Expression in Royal Gala was detected earlier than in Braeburn and Granny Smith, relative to internal ethylene concentration. Genomic clones corresponding to the ACC-oxidase and PG mRNAs expressed in ripe apple fruit were isolated and ca. 2 kb of each promoter was sequenced. The start point of transcription in each gene was mapped by primer extension, and sequences homologous to elements in other ethylene-responsive or PG promoters were identified. The fruit specificity of the apple ACC-oxidase and PG promoters was investigated in transgenic tomato plants using a nested set of promoter fragments fused to the β-glucuronidase (gusA) reporter gene. For the ACC-oxidase gene, 450 bp of 5′ promoter sequence was sufficient to drive GUS expression, although this expression was not specific to ripening fruit. Larger fragments of 1966 and 1159 bp showed both fruit and ripening specificity. For the PG gene, promoter fragments of 1460 and 532 bp conferred ripening-specific expression in transgenic tomato fruit. However GUS expression was down-regulated by 2356 bp of promoter, suggesting the presence of a negative regulatory element between positions -1460 and -2356.