, Volume 51, Issue 1-2, pp 285-298

A Framework for a Delaware Inland Bays Environmental Classification

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Since Delaware's coastal bays have been highly eutrophied for at least twenty years and Maryland's coastal bays are not nutrient stressed, dominance of the fish community in Delaware's coastal bays by Fundulus sp. may be an indicator of nutrient stress. Maryland's coastal bays are menhaden, spot, and anchovy dominated. The dominance of Fundulus sp. in a nutrient-stressed system relates to the hardy nature of these fishes, especially in low-oxygen conditions. Submerged aquatic vegetation as seagrasses (SAV) has been absent from the highly nutrient-stressed Delaware coastal bays for about twenty-five years. In contrast, SAV is still found in Maryland's coastal bays. The loss of SAV as a habitat for young fish may also be contributing to the apparent species shift in Delaware's coastal bays.

Indian River Bay is less hospitable to macroalgae (seaweeds) than Rehoboth Bay. Dominance of Ulva in Indian River Bay reflects its tolerance to varying salinities, higher nutrient levels, and increased turbidities, and indicates a stressed system. The total volume of macroalgae, especially in Rehoboth Bay, tends to follow the seasonal cycle for phosphorus.

Based on an assessment of the ecological condition of the Delaware and Maryland coastal bays conducted by EMAP in 1993 and other related studies, the author offers a conceptual framework for Delaware's inland bays environmental classification, considering the water quality parameters of turbidity, TSS, Chla, DIN, DIP, and O2 as they relate to presence of SAV, seaweed abundance and diversity, benthic invertebrate diversity, and fish sensitivity to low oxygen.