, Volume 38, Issue 2, pp 173–187

Influence of excess nitrogen deposition on a white spruce (Picea glauca) stand in southern Alaska


    • College of Forest ResourcesUniversity of Washington
    • College of Forest ResourcesUniversity of Washington
    • Complex Systems Research CenterUniversity of New Hampshire
    • Department of Botany and Plant PathologyOregon State University

DOI: 10.1023/A:1005727411677

Cite this article as:
WHYTEMARE, A.B., EDMONDS, R.L., ABER, J.D. et al. Biogeochemistry (1997) 38: 173. doi:10.1023/A:1005727411677


Excess N delivered to forest ecosystems has been shown to alterinternal ecosystem biogeochemical cycles, contribute to forestdecline, and negatively affect the health of receiving waters.In the vicinity of the Nikiski Industrial Complex, Kenai Peninsula,Alaska, there has been recent concern about the influence ofNH3 emissions that have occurred for over twodecades on local soils and vegetation. The study site representedan opportunity to examine the influence of elevated N depositionon a northern coniferous ecosystem in an area with a low backgroundof N deposition. Overstory vegetation in the area is dominated bywhite spruce (Picea glauca Moench. Voss) and paper birch (Betulapapyrifera Marsh.). Mortality of both species has occurred adjacent(<2 km) to the industrial complex. Average annual Ndeposition rates ranged from 0.7 to 21.0 kg ha-1 y-1in the area, with the highest rates closest to the complex. Sulfatedeposition at the site was low. Due to the high NH3deposition, precipitation near the complex was less acidic thanprecipitation in general; bulk precipitation pH ranged from 5.51to 7.06. Within 1.80 km of the facility there was an increase inKCl- and resin- extractable soil NH4+ andNO3- in the O horizon, and a decrease in soil pHcompared to soils further from the facility. Spruce near thefacility had chlorotic foliage and thinning crowns, higherconcentrations of N, but lower foliar Ca and Mg. Foliar Mglevels approached deficiency levels, but foliar Ca was wellabove reported deficiency levels at all sites. Both Mg:N andCa:N ratios, however, suggest nutrient imbalances in the highN deposition zone. Canopy death and fertilization by N appearto have encouraged growth of the native bluejoint grass. Thepresence of elevated NO3- in O horizon soilextracts, elevated NO3- in resin bags placed betweenthe O and E horizons, and nutritional imbalances in the foliagesuggest that N saturation may be occurring in soils adjacent to thefacility.

N saturationnitrificationnutrient deficiencynutrient imbalancePicea glauca

Copyright information

© Kluwer Academic Publishers 1997