Skip to main content
Log in

Monitoring growth of the methanogenic archaea Methanobacterium formicicum using an electronic nose

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Growth of the methanogenic archaea, Methanobacterium formicicum, in pure culture was monitored by analysing samples from the gas phase with an array of chemical gas sensors (an `electronic nose'). Analyses of the methane and protein formation rates were used as independent parameters of growth, and the data obtained from the electronic nose were evaluated using principal component analysis (PCA). We found that different growth phases can be distinguished with the electronic nose followed by PCA evaluation. The fast response of the sensors in combination with the high correlations with other parameters measuring growth show that the electronic nose can be a useful tool to rapidly determine methanogenic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armgarth A,Söderberg D,Lundström I (1982) Palladium and platinum gate metal-oxide-semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 47: 654-655.

    Google Scholar 

  • Bachinger T,Mandenius C-F (2000a) Physiology motivated monitoring of fermentation processes by means of an electronic nose. Chem. Eng. Technol. (in press).

  • Bachinger T,Mandenius C-F (2000b) Searching for process information in the aroma of cell cultures. Trends Biotechnol. (in press).

  • Bachinger T,Mårtensson P,Mandenius C-F (1998) Estimation of biomass and specific growth rate in a recombinant Escherichia coli batch cultivation process using a chemical multisensor array. J. Biotechnol. 60: 55-66.

    Google Scholar 

  • Bachinger T,Riese U,Eriksson R,Mandenius C-F (2000) Monitoring cellular state transitions in a production-scale CHO-cell process using an electronic nose. J. Biotechnol. 76: 61-71.

    Google Scholar 

  • Balch W,Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HSCoM)-dependent growth of Methanobacterium ruminantum in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781-791.

    Google Scholar 

  • Börjesson T,Eklöv T,Jonsson A,Sundgren H,Schnürer J (1996) Electronic nose for odor classification of grains. Cereal Chem. 73: 457-461.

    Google Scholar 

  • Bryant MP,Boone DR (1987) Isolation and characterisation of Methanobacterium formicicum MF. Int. J. Syst. Bacteriol. 37: 171.

    Google Scholar 

  • Di Natale C,Mantini A,Macagnano A,Antizzi D,Paolesse R,D'Amico A (1999) Electronic nose analysis of urine samples containing blood. Physiol. Meas. 20: 377-384.

    Google Scholar 

  • Eklöv T,Johansson G,Winquist F,Lundström I (1998) Monitoring sausage fermentation using an electronic nose. J. Sci. Food Agric. 76: 525-532.

    Google Scholar 

  • Gardner JW,Bartlett PN (1994) A brief history of electronic noses. Sensors Actuators B18-19: 211-220.

    Google Scholar 

  • Gardner JW,Craven M,Hines EL (1998) The prediction of bacteria type and culture growth phase by an electronic nose with a multilayer perceptron network. Meas. Sci. Technol. 9: 120-127.

    Google Scholar 

  • Gardner JW,Hines EL,Wilkinson M (1990) Application of artifi-cial neural networks to an electronic olfactory system. Meas. Sci. Technol. 1: 446-451.

    Google Scholar 

  • Geladi P,Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal. Chim. Acta 185: 1-17.

    Google Scholar 

  • Gibson TD,Prosser O,Hulbert JN,Marshall RW,Corcoran P,Lowery P,Ruck-Keene EA,Heron S (1997) Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors Actuators B44: 413-422.

    Google Scholar 

  • Gijzen HJ,Zwart KB,Verhagen FJM,Vogels GD (1988) High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficent acidogenesis. Biotechnol. Bioeng. 31: 418-425.

    Google Scholar 

  • Godon J-J,Zumstein E,Dabert P,Habouzit F,Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determinated by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63: 2802-2813.

    Google Scholar 

  • Gujer W,Zehnder AJB (1983) Conversion processes in anaerobic digestion. Wat. Sci. Technol. 15: 127-167.

    Google Scholar 

  • Holmberg M,Gustafsson F,Hörnsten EG,Winquist F,Nilsson LE,Ljung L,Lundström I (1998) Bacteria classification based on feature extraction from sensor data. Biotechnol. Tech. 12: 319-324.

    Google Scholar 

  • Hörnsten EG,Lundström I,Nordberg Å,Mathisen B (1991) The use of palladium metal oxide semiconductor structures in quantitative studies of H2 and H2S in processes related to biogas production. Bioproc. Eng. 6: 235-240.

    Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellolytic bacteria. Bacteriol. Rev. 14: 1-49.

    Google Scholar 

  • Jolliffe IT (1986) Principal Component Analysis. New York: Springer-Verlag.

    Google Scholar 

  • Kalman EL,Winquist F,Lundström I (1997) A new pollen detection method based on an electronic nose. Atmos. Environ. 31: 1715-1719.

    Google Scholar 

  • Lundström I (1996) Approaches and mechanisms to solid state based sensing. Sensors Actuators B35-36: 11-19.

    Google Scholar 

  • Lundström I,Armgarth M,Petersson L-G (1989) Physics with catalytic metal gate chemical sensors. CRC Crit. Rev. Solid State Mat. Sci. 15: 201-220.

    Google Scholar 

  • Mandenius C-F (1999) Electronic noses for bioreactor monitoring. Adv. Biochem. Eng. 66: 65-82.

    Google Scholar 

  • Mandenius C-F,Hagman A,Dunås F,Sundgren H,Lundström H (1998) A multisensor array for visualizing continous state transitions in biopharmaceutical processes using principal component analysis. Biosens. Bioelectron. 13: 193-199.

    Google Scholar 

  • Nordberg Å,Hansson M,Sundh I,Nordkvist E,Carlsson H,Mathisen B (2000) Monitoring of a biogas process using electronic gas sensors and near-infrared spectroscopy (NIR). Wat. Sci. Technol. 41: 1-8.

    Google Scholar 

  • Örlygsson J,Houwen FP,Svensson BH (1993) Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures. Swedish J. Agric. Res. 23: 45-54.

    Google Scholar 

  • Peterson GL (1983) Determination of total protein. Meth. Enzymol. 91: 95-119.

    Google Scholar 

  • Raskin L,Zheng D,Griffin ME,Stroot PG,Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Leeuwenhoek 68: 297-308.

    Google Scholar 

  • Stuetz RM,Fenner RA,Engin G (1999) Characterisation of wastewater using an electronic nose. Water Res. 33: 442-452.

    Google Scholar 

  • Whitman WB,Bowen TL,Boone DR (1992) The methanogenic bacteria. In: Balows A,Trüper HG,Dworkin M,Harder W,Schleifer K-H, eds. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn., Vol. 1. New York: Springer-Verlag, pp. 719-767.

    Google Scholar 

  • Zehnder AJB,Huser BA,Brock TD,Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124: 1-11.

    Google Scholar 

  • Zellner G,Macario AJL,de Macario EC (1996) Microbial subpopulation in the biofilm attached to the substratum and in the free flocs of a fixed-bed anaerobic bioreactor. Appl. Microbiol. Biotechnol. 46: 443-449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandgård, J., Sundh, I., Nordberg, Å. et al. Monitoring growth of the methanogenic archaea Methanobacterium formicicum using an electronic nose. Biotechnology Letters 23, 241–248 (2001). https://doi.org/10.1023/A:1005643606640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005643606640

Navigation