Skip to main content
Log in

Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We present global warming scenarios computed with an intermediate-complexity atmosphere-ocean-sea ice model which has been extensively validated for a range of past climates (e.g., the Last Glacial Maximum). Our simulations extend to the year 3000, beyond the expected peak of CO2 concentrations. The thermohaline ocean circulation declines strongly in all our scenarios over the next 50 years due to a thermal effect. Changes in the hydrological cycle determine whether the circulation recovers or collapses in the long run. Both outcomes are possible within present uncertainty limits. In case of a collapse, a substantial long-lasting cooling over the North Atlantic and a drying of Europe is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bond, G., Broecker, W., Johnsen, S. McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: 1993, ‘Correlations between Climate Records from North Atlantic Sediments and Greenland Ice’, Nature 365, 143–147.

    Google Scholar 

  • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: 1997, ‘A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates’, Science 278, 1257–1266.

    Google Scholar 

  • Broecker, W.: 1987, ‘Unpleasant Surprises in the Greenhouse?’, Nature 328, 123.

    Google Scholar 

  • Broecker, W.: 1997, ‘Thermohaline Circulation, the Achilles Heel of our Climate System: Will Man-Made CO2 Upset the Current Balance?’, Science 278, 1582–1588.

    Google Scholar 

  • Campbell, C. J. and Laherrère, J. H.: 1998, ‘The End of Cheap Oil’, Scientific American (March), 60–65.

  • Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, N. S., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: 1993, ‘Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record’, Nature 364, 218–220.

    Google Scholar 

  • Ganopolski, A., Kubatzki, C., Claussen, M. Brovkin, V., and Petoukhov, V.: 1998a, ‘The Role of Vegetation-Atmosphere-Ocean Interaction for the Climate System during the Mid-Holocene’, Science 280, 1916–1919.

    Google Scholar 

  • Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M.: 1998b, ‘Simulation of Modern and Glacial Climates with a Coupled Global of Intermediate Complexity’, Nature 391, 350–356.

    Google Scholar 

  • Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., and Kubatzki, C.: 1998c, ‘CLIMBER-2: A Climate System Model of Intermediate Complexity, Part II: Model Sensitivity’, Clim. Dyn., submitted.

  • Houghton, J. T., Meira Filho, L. G., Callander B. A., Harris, N., Kattenberg, A., and Maskell, K.: 1995, Climate Change 1995, Cambridge University Press, Cambridge, p. 572.

    Google Scholar 

  • Keeling, C. D. and Whorf, T. P.: 1991, Trends 91: A Compendium of Data on Global Change, Boden, T. A. et al. (eds.), Oak Ridge Natl. Lab., Oak Ridge, TN.

    Google Scholar 

  • Lindzen, R. S.: 1990, ‘Some Coolness Converning Global Warming’, Bull. Amer. Meteorol. Soc. 71, 288–299.

    Google Scholar 

  • Lindzen, R. S.: 1993, ‘Absence of Scientific Basis’, Res. Exploration 9, 191–200.

    Google Scholar 

  • Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and Storage of CO2 in the Ocean — An Inorganic Ocean-Circulation Carbon Cycle Model’, Clim. Dyn. 2, 63–90.

    Google Scholar 

  • Manabe, S., Spelman, M. J., and Stouffer, R. J.: 1992, J. Climate 5, 105–126.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1988, ‘Two Stable Equilibria of a Coupled Ocean-Atmosphere Model’, J. Climate 1, 841–866.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1993, ‘Century-Scale Effects of Increased Atmospheric CO2 on the Ocean-Atmosphere System’, Nature 364, 215–218.

    Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1994, ‘Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide’, J. Climate 7, 5–23.

    Google Scholar 

  • Neftel, A., Friedli, H., Moore, E., Lotscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B.: 1990, Trends 90: A Compendium of Data on Global Change, Boden, T. A. et al. (eds.), Oak Ridge Natl. Lab., Oak Ridge, TN.

    Google Scholar 

  • Petoukhov, V., Ganapolski, A., Brovkin, V., Clausen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: 1998, ‘CLIMBER-2: A Climate System Model of Intermediate Complexity, Part 1: Model Description and Performance for Present Climate’, Clim. Dyn., submitted.

  • Rahmstorf, S.: 1996, ‘On the Freshwater Forcing and Transport of the Atlantic Thermohaline Circulation’, Clim. Dyn. 12, 799–811.

    Google Scholar 

  • Rahmstorf, S.: 1997, ‘Risk of Sea-Change in the Atlantic’, Nature 388, 825–826.

    Google Scholar 

  • Rahmstorf, S., Marotzke, J., and Willebrand, J.: 1996, ‘Stability of the Thermohaline Circulation’, in Krauss, W. (ed.), The Warm Water Sphere of the North Atlantic Ocean, Borntraeger, Stuttgart, pp. 120–158.

    Google Scholar 

  • Roemmich, D. H. and Wunsch, C.: 1985, ‘Two Transatlantic Sections: Meridonial Circulation and Heat Flux in the Subtropical North Atlantic Ocean’, Deep-Sea Res. 32, 619–664.

    Google Scholar 

  • Schiller, A., Mikolajewicz, U., and Voss, R.: 1997, ‘The Stability of the Thermohaline Circulation in a Coupled Ocean-Atmosphere General Circulation Model’, Clim. Dyn. 13, 325–347.

    Google Scholar 

  • Schneider, S. H, Peteet, D. M., and North, G. R.: 1987, ‘A Climate Model Intercomparison for the Younger Dryas and its Implications for Paleoclimatic Data Collection’, in Berger, W. H. and Labeyrie, D. (eds.), Abrupt Climatic Change, D. Reidel, Dordrecht, pp. 399–417.

    Google Scholar 

  • Severinghaus, J., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L.: 1998, ‘Timing of Abrupt Climate Change at the End of the Younger Dryas Interval from Thermally Fractionated Gases in Polar Ice’, Nature 391, 141–146.

    Google Scholar 

  • Stocker, T. and Schmittner, A.: 1997, ‘Influence of CO2 Emission Rates on the Stability of the Thermohaline Circulation’, Nature 388, 862–865.

    Google Scholar 

  • Stocker, T. and Wright, D. G.: 1991, ‘A Zonally Averaged Ocean Model for the Thermohaline Circulation, Part II: Interocean Circulation in the Pacific Atlantic Basin System’, J. Phys. Oceanog. 21 1725–1739.

    Google Scholar 

  • Stommel, H.: 1961, ‘Thermohaline Convection with Two Stable Regimes of Flow’, Tellus 13, 224–230.

    Google Scholar 

  • White, J. W. C.: 1993, ‘Don't Touch that Dial’, Nature 364, 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmstorf, S., Ganopolski, A. Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model. Climatic Change 43, 353–367 (1999). https://doi.org/10.1023/A:1005474526406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005474526406

Keywords

Navigation