Article

Climatic Change

, Volume 43, Issue 2, pp 387-411

First online:

Potential Role of Solar Variability as an Agent for Climate Change

  • Cédric BertrandAffiliated withInstitut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain
  • , Jean-Pascal van YperseleAffiliated withInstitut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Numerical experiments have been carried out with a two-dimensional sector averaged global climate model in order to assess the potential impact of solar variability on the Earth's surface temperature from 1700 to 1992. This was done by investigating the model response to the variations in solar radiation caused by the changes in the Earth's orbital elements, as well as by the changes intrinsic to the Sun. In the absence of a full physical theory able to explain the origin of the observed total solar irradiance variations, three different total solar irradiance reconstructions have been used. A total solar irradiance change due to the photospheric effects incorporated in the Willson and Hudson (1988) parameterization, and the newly reconstructed solar total irradiance variations from the solar models of Hoyt and Schatten (1993) and Lean et al. (1995). Our results indicate that while the influence of the orbital forcing on the annual and global mean surface temperature is negligible at the century time scale, the monthly mean response to this forcing can be quite different from one month to another. The modelled global warming due to the three investigated total solar irradiance reconstructions is insufficient to reproduce the observed 20th century warming. Nevertheless, our simulated surface temperature response to the changes in the Sun's radiant energy output suggests that the Gleissberg cycle (≈88 years) solar forcing should not be neglected in explaining the century-scale climate variations. Finally, spectral analysis seems to point out that the 10- to 12-year oscillations found in the recorded Northern Hemisphere temperature variations from 1700 to 1992 could be unrelated to the solar forcing. Such a result could indicate that the eleven-year period which is frequently found in climate data might be related to oscillations in the atmosphere or oceans, internal to the climate system.