, Volume 35, Issue 4, pp 415-434

RECOGNISING THE UNCERTAINTY IN THE QUANTIFICATION OF THE EFFECTS OF CLIMATE CHANGE ON HYDROLOGICAL RESPONSE

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A widely used method of evaluating effects of climate change on flow regime is to perturb the climate inputs to a rainfall–runoff model and examine the effect on a statistic of the modelled flows. Such studies require four elements: a method of perturbing the climate, a rainfall–runoff model, a study catchment and a flow index. In practice the direction and magnitude of the estimated effects depend on each of the four elements, leading to concern over the usefulness and generality of the results. To investigate these uncertainties two climate scenarios and eight climate sensitivity tests have been applied to three UK catchments using two conceptual rainfall–runoff models in order to quantify effects of climate change on three flow indices representing mean runoff, flood magnitudes and low flows. The sensitivity tests were found to be useful to assess the suitability of the models to simulate flows outside the conditions experienced in their calibration. Both models gave internally consistent results but, on close examination, one model was found inappropriate for this application. Results show that the effect of climate change on flow varies between catchments and that different flow response indices can change in opposite directions, e.g. floods increased in magnitude while low flows reduced. Contrasting results were obtained from the two climate scenarios.