1.

Arnol'd, V.: Plane curves, their invariants, perestroikas and classifications, Preprint, ETH Z¨urich, 1993; Singularities and curves,

*Adv. Soviet Math.*
**21**(1994), 33–91.

Google Scholar2.

Arnol'd, V.: *Topological Invariants of Plane Curves and Caustics*, University Lecture Series, vol. 5, Amer. Math. Soc., 1994.

3.

Arnol'd, V.:

*Invariants and Perestroikas of Plane Fronts*, Trudy Math. Inst. Steklova, 1994.

Google Scholar4.

Arnol'd, V.: The geometry of spherical curves and the algebra of quaternions, *Russian Math. Surveys*, v**n50**

6.

Aicardi, F.: Discriminant and local invariants of planar fronts, Preprint, Trieste, 1994.

7.

Aicardi, F.: Topological invariant of knots and framed knots in the solid torus,

*C.R. Acad. Sci. Paris*,

**I 321**(1995), 81–86.

Google Scholar8.

Aicardi, F.: Topological invariants of Legendrian curves,

*C.R. Acad. Sci. Paris*,

**I 321**(1995), 199–204.

Google Scholar9.

Aicardi, F.: Partial indices and linking numbers for planar fronts, preprint, Trieste, 1994.

10.

Alvarez, J.C.:, Symplectic geometry of spaces of geodesics, PhD Thesis, Rutgers Univ., 1994.

Google Scholar11.

Bennequin, D.: Entrelacements et équations de Pfaff,

*Asterisque*,

**107–108**(1983), 87–161.

Google Scholar12.

Chmutov, S. and Duzhin, S.: Explicit formulas for Arnold's generic curves invariants, Preprint, 1995.

13.

Chmutov, S. and Goryunov, V.V.:Kauffman bracket of plane curves,Max Planck Institut Preprint 95–104. (to appear in Comm. Math. Phys.)

14.

Berger, M., Gostiaux, B.:

*Differential Geometry: Manifolds, Curves, and Surfaces*, GTM 115, Springer, Berlin, Heidelberg, New York, 1988.

Google Scholar15.

Fabricius-Bjerre, F.: On the double tangents of plane closed curves,

*Math. Scand.*
**11**(1962), 113–116.

Google Scholar16.

Fabricius-Bjerre, F.: A relation between the numbers of singular points and singular lines of a plane closed curve,

*Math. Scand.*
**40**(1977), 20–24.

Google Scholar17.

Goryunov, V. V.: Vassiliev invariants of knots in R^{3} and in a solid torus, Preprint 1–95, Univ. of Liverpool, 1995.

18.

Goryunov, V. V.: Vassiliev type invariants in Arnold's J^{+}-theory of plane curves without direct self-tangencies, Preprint 2–95, Univ. of Liverpool, 1995.

19.

Gusein-Zade, S. M. and Natanzon, S.M.: The Arf-invariant and the Arnold invariants of plane curves, Preprint, 1995.

20.

Halpern, B.: Global theorems for closed plane curves,

*Bull. Amer. Math. Soc*.

**76**(1970), 96–100.

Google Scholar21.

Lin, X.S. and Wang, Z.: Integral geometry of plane curves and knot invariants (to appear in *J. Differential Geom.*).

22.

Pignoni, R.: Integral relations for pointed curves in a real projective plane,

*Geom. Dedicata*
**45**(1993), 263–287.

Google Scholar23.

Polyak,M.: Invariants of generic plane curves and fronts via Gauss diagrams,Max Planck Institut Preprint 116–94.

24.

Polyak, M.: On the Bennequin invariant of Legendrian curves and its quantization, C.R. Acad. Sci. Paris, I322(1995), 77–82.

Google Scholar25.

Shumakovich, A.: Formulas for the strangeness of plane curves, Algebra i Analiz **7**(1995) no 3, 165–199.

26.

Tabachnikov, S.L.: Computation of the Bennequin invariant of a Legendre curve from the geometry of its front (Russian) *Funct. An. Pri.*
**22**, 3, (July-September 1988), 89–90. 27. Viro, O.: First degree invariants of plane curves on surfaces, Preprint, Uppsala University, 1994. 28. Weiner, J.: Spherical Fabricius-Bjerre formula with application to closed space curves, *Math. Scand.*
**61**(1987), 286–291. 29. Whitney, H.: On regular closed curves in the plane, *Compositio Math.*
**4**(1937), 276–284.