1.

Alchourrón, C., Gärdenfors, P. and Makinson, D. (1985): On the logic of theory change. *Journal of Symbolic Logic*
**50**: 510- 530.

2.

Andréka, H., Kurucz, Á., Németi, I., Sain, I. and Simon, A. (1996): Exactly which logics touched by the dynamic trend are decidable? In L. Pólós, M. Masuch, M. Marx (eds.), *Arrow Logics and Multi-Modal Logics*, Studies in Logic, Language and Information, CSLI Publications.

3.

Van Benthem, J. (1983): *Modal Logic and Classical Logic*. Bibliopolis, Naples.

4.

Van Benthem, J. (1989): Modal logic as a theory of information. Technical Report LP-89-05, ILLC, University of Amsterdam.

5.

Van Benthem, J. (1991): *Language in Action*. Nort-Holland, Amsterdam.

6.

Van Benthem, J. (1900): Logic and the flow of information. In D. Prawitz, B. Skyrms and D. Westerståhl (eds.), *Proc. 9th ILMPS*, North-Holland, Amsterdam.

7.

Brink, C. (1981): Boolean modules. *Journal of Algebra*
**71**: 291- 313.

8.

Brink, C., Britz, K. and Schmidt, R. (1994): Peirce algebras. *Formal Aspects of Computing*
**6**: 339- 358.

9.

Danecki, R. (1985): Nondeterministic propositional dynamic logic with intersection is decidable. In *LNCS* 208, Springer, New York, pp. 34- 53.

10.

Van Eijck, J. and de Vries, F.-J. (1995): Reasoning about update logic. *Journal of Philosophical Logic*
**24**: 19- 46.

11.

Finger, M. and Gabbay, D. M. (1992): Adding a temporal dimension to a logic system. *Journal of Logic, Language and Information*
**1**: 203- 233.

12.

Fuhrmann, A. (1990): On the modal logic of theory change. In A. Fuhrmann and M. Morreau (eds.), *LNAI* 465, pp. 259- 281.

13.

Gabbay, D. M. and Hodkinson, I. M. (1991): An axiomatization of the temporal logic with Since and Until over the real numbers. *Journal of Logic and Computation*
**1**: 229- 259.

14.

Gabbay, D. M., Hodkinson, I. and Reynolds, M. (1994): *Temporal Logic: Mathematical Foundations and Computational Aspects*. Oxford University Press, Oxford.

15.

Gärdenfors, P. (1988): *Knowledge in Flux*. The MIT Press, Cambridge, MA.

16.

Gargov, G. and Passy, S. (1990): A note on Boolean modal logic. In Petkov, P. P. (ed.), *Mathematical Logic. Proccedings of the 1988 Heyting Summerschool*, Plenum Press, New York, 311- 321.

17.

Groenendijk, J. and Stokhof, M. (1991): Dynamic predicate logic. *Linguistics and Philosophy*
**14**: 39- 100.

18.

Gurevich, Y. and Shelah, S. (1985): The decision problem for branching time logic. *Journal of Symbolic Logic*
**50**: 668- 681.

19.

Harel, D. (1983): Recurring dominoes: making the highly undecidable highly understandable. In *LNCS 158 (Proc. of the Conference on Foundations of Computing Theory)*, pp. 177- 194. Springer-Verlag, Berlin.

20.

Harel, D. (1984): Dynamic Logic. In Gabbay, D. M. and Guenthner, F. (eds.), *Handbook of Philosophical Logic*, vol. 2, Reidel, Dordrecht, pp. 497- 604.

21.

Jaspars, J. (1994): *Calculi for Constructive Communicaton*. Ph.D. thesis. ITK, Tilburg, and ILLC, University of Amsterdam.

22.

Jaspars, J. and Krahmer, E. (1996): A programme of modal unification of dynamic theories. In *Proceedings of the 10th Amsterdam Colloquium*, ILLC, University of Amsterdam.

23.

Kamp, H. (1968): *Tense Logic and the Theory of Linear Order*. Ph.D. thesis, UCLA.

24.

Katsuno, H. and Mendelzon, A. O. (1991): On the difference between updating a knowledge base and revising it. In Allen, J. A., Fikes, R. and Sandewall, E. (eds.), *Princ. of Knowledge Representation and Reasoning: Proc. 2nd Intern. Conf*., pp. 387- 394. Morgan Kaufman.

25.

Katsuno, H. and Mendelzon, A. O. (1992): Propositional knowledge base revision and minimal change. *Artificial Intelligence*
**52**: 263- 294.

26.

Kozen, D. (1981): On the duality of dynamic algebras and Kripke models. In Engeler, E. (ed.), *Logic of Programs 1981, LNCS 125*, pp. 1- 11. Springer-Verlag, Berlin.

27.

Marx, M. (1995): *Algebraic Relativization and Arrow Logic*. Ph.D. thesis, ILLC, University of Amsterdam.

28.

Passy, S. and Tinchev, T. (1991): An essay in combinatory dynamic logic. *Information and Computation*
**93**: 263- 332.

29.

Pratt, V. (1990): Action logic and pure induction. In van Eijck, J. (ed.), *JELIA-90*, pp. 97- 120, Springer-Verlag, Berlin.

30.

Pratt, V. (1990): Dynamic algebras as a well-behaved fragment of relation algebras. In Bergman, C. H., Maddux, R. D. and Pigozzi, D. L. (eds.), *Algebraic Logic and Universal Algebra in Computer Science, LNCS 425*, pp. 77- 110.

31.

Rabin, M. O. (1969): Decidability of second order theories and automata on infinite trees. *Transactions of the American Mathematical Society*
**141**: 1- 35.

32.

De Rijke, M. (1992): The modal logic of inequality. *Journal of Symbolic Logic*
**57**: 566- 584.

33.

De Rijke, M. (1994): Meeting some neighbours. In van Eijck, J. and Visser, A. (eds.), *Logic and Information Flow*, MIT Press, Cambridge, Mass., pp. 170- 195.

34.

De Rijke, M. (1995): The logic of Peirce algebras. *Journal of Logic, Language and Information*
**4**: 227- 250.

35.

De Rijke, M. (1995): Modal model theory. Report CS-R9517, CWI, Amsterdam. To appear in *Annals of Pure and Applied Logic*.

36.

Veltman, F. (1996): Defaults in update semantics. *Journal of Philosophical Logic*
**25**: 221- 261.

37.

Venema, Y. (1991): *Many-Dimensional Modal Logic*. Ph.D. Thesis, ILLC, University of Amsterdam.

38.

Venema, Y. (1993): Derivation rules as anti-axioms in modal logic. *Journal of Symbolic Logic*
**58**: 1003- 1034.