, Volume 198, Issue 1, pp 19-31

Fine root turnover of irrigated hedgerow intercropping in Northern Kenya

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Fine root turnover (<2 mm) was determined from repeated measurements of root distribution up to 120 cm soil depth by core sampling in four month intervals. Sole cropped Sorghum bicolor and Acacia saligna were compared with the agroforestry combination in an alley cropping system in semiarid Northern Kenya. Three methods for the calculation of root production were used: the max-min, balancing-transfer and compartment-flow method. The highest root biomass was found in the topsoil for all cropping systems, though trees had a deeper root system. Trees and crops had a similar amount of below-ground biomass during the vegetation period (0.3 and 0.4 Mg DM ha-1 120 cm-1), but in the agroforestry combination root biomass was more than the sum of the sole cropped systems (1.1 Mg DM ha-1 120 cm-1). The tree system showed a very static root development with little fluctuation between seasons, whereas root biomasses were very dynamic in the crop and tree + crop systems. Root production was highest in the tree + crop combination with 2.1 Mg DM ha-1 a-1, with about 50% less in sole cropped trees and crops. Root N input to soil decreased in the order tree + crop>tree>crop system with 13.5, 11.0 and 3.2 kg N ha-1 a-1, and cannot be estimated from total below-ground biomass or carbon turnover, as N is accumulated in senescing roots. Such low N input to soil stresses the need for investigating other processes of nutrient input from roots to soil. Areas of highest N input were identified in the topsoil under the tree row in the tree system. Resource utilisation and C and N input to soil were highest with a combination of annual and perennial crops.