Skip to main content
Log in

Identifying lettuce species (Lactuca subsect. Lactuca, Asteraceae): A practical application of flow cytometry

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The wild lettuce species L. serriola, L. saligna, and L. virosa are important genitors in lettuce (L. sativa) breeding. Identifying these wild species can be problematic because in some cases they look very similar. Flow cytometry was tested for its reliability and general applicability as a tool to distinguish them. Three series of tests were conducted: (1) Tests with three accessions of L. sativa and one accession of each of the wild species, repeated three times throughout the year. In each repeat, the mean relative DNA amount of L. serriola was significantly higher than that of L. saligna, but significantly lower than that of L. virosa. The mean relative DNA amount of L. sativa did not differ from that of L. serriola.(2) Tests with each wild species represented by 10 accessions. Significant differences between the accessions within each species demonstrated the presence of intraspecific variation. Notwithstanding this intraspecific variation, the relative DNA amounts of all accessions of L. serriola were significantly higher than that of all L. saligna accessions, and significantly lower than that of all L. virosa accessions. Therefore, all accessions could be assigned to the appropriate species on the basis of their DNA amounts. (3) Tests with single plants from 10 accessions of each of the wild species. These test revealed that individual plants of L. serriola, L. saligna, and L. virosa can be reliably identified with flow cytometry, when aL. serriola sample of established identity is used as internal reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter 9: 208-218.

    Article  CAS  Google Scholar 

  • Bennett, M.D., 1985. Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling, M. (Ed.), Plant genetics: proceedings of the third annual ARCO Plant Cell Research Institute-UCLA symposium on plant biology held in Keystone, Colorado April 13-19 1985, pp. 283-302. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Bennett, M.D. & J.B. Smith, 1976. Nuclear DNA amounts in angiosperms. Philos Trans, Ser B 274: 227-274.

    CAS  Google Scholar 

  • Bennett, M.D., J.B. Smith & J.S. Heslop-Harrison, 1982. Nuclear DNA amounts in angiosperms. Proc Roy Soc London, Ser B, Biol Sci 216: 179-199.

    Article  CAS  Google Scholar 

  • Bennett, M.D. & J.B. Smith, 1991. Nuclear DNA amounts in angiosperms. Philos Trans, Ser B 334: 309-345.

    CAS  Google Scholar 

  • Bennett, M.D. & I.J. Leitch, 1995. Nuclear DNA amounts in angiosperms. Ann Bot 76: 113-176.

    Article  CAS  Google Scholar 

  • Bennett, M.D. & I.J. Leitch, 1997. Nuclear DNA amounts in angiosperms-583 new estimates. Ann Bot 80: 169-196.

    Article  CAS  Google Scholar 

  • Cavallini, A. & L. Natali, 1991. Intraspecific variation of nuclear DNA content in plant species. Caryologia 44: 93-107.

    CAS  Google Scholar 

  • De Laat, A.M.M. & J. Blaas, 1984. Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67: 463-467.

    Google Scholar 

  • Dhillon, S.S., 1988. DNA analysis during growth and development. In: Hanover, J.W. & D.E. Keithley (Eds.), Genetic Manipulation of Woody Plants, pp. 265-274. Plenum, New York.

    Google Scholar 

  • Flavell, R.B., 1986. Repetitive DNA and chromosome evolution in plants. Phil Trans R Soc Lond. B: 227-242.

    Google Scholar 

  • Flavell, R.B., M.D. Bennett, J.B. Smith & D.B. Smith, 1974. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257-269.

    Article  PubMed  CAS  Google Scholar 

  • Frietema de Vries, F.T., R. Van der Meijden & W.A. Brandenburg, 1994. Botanical Files on Lettuce (Lactuca sativa). Gorteria suppl. 2.

  • Frietema de Vries, F.T., 1996. Cultivated plants and the wild flora. PhD Thesis, Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands.

    Google Scholar 

  • Hammatt, N., N.W. Blackhall & M.R. Davey, 1991. Variation in the DNA content of Glycine species. J Exp Bot 42: 659-665.

    CAS  Google Scholar 

  • Huff, D.R. & A.J. Palazzo, 1998. Fine fescue species determination by laser flow cytometry. Crop Sci 38: 445-450.

    Article  Google Scholar 

  • Johnston, J.S., A. Jensen, D.G. Czeschin, Jr. & H.J. Price, 1996. Environmentally induced nuclear 2C DNA content instability in Helianthus annuus (Asteraceae). Amer J Bot 83: 1113-1120.

    Article  Google Scholar 

  • Kapuscinski, J. & W. Szer, 1979. Interactions of 40, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nucl Acids Res 6: 3519-3534.

    PubMed  CAS  Google Scholar 

  • Kesseli, R.V. & R.W. Michelmore, 1986. Genetic variation and phylogenies detected from isozyme markers in species of Lactuca. J Heredity 77: 324-331.

    CAS  Google Scholar 

  • Koopman, W.J.M., 1999. Plant systematics as a useful tool for plant breeders: examples from lettuce. In: Lebeda, A. & E. Kristkova (Eds.), Eucarpia Leafy Vegetables '99. Proceedings of the Eucarpia meeting on leafy vegetables genetics and breeding, Olomouc, Czech Republic, 8-11 June, 1999, pp. 95-105. Palacky University, Olomouc.

    Google Scholar 

  • Koopman, W.J.M. & J.H. De Jong, 1996. A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae). Acta Bot Neerl 45: 211-222.

    Google Scholar 

  • Labani, R.M. & T.T. Elkington, 1987. Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59: 119-128.

    Google Scholar 

  • Manzini, G., M.L. Barcellona, M. Avitabile & F. Quadrifoglio, 1983. Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. Nucl Acids Res 11: 8861-8876.

    PubMed  CAS  Google Scholar 

  • McGuire, P.E., E.J. Ryder, R.W. Michelmore, R.L. Clark, R. Antle, G. Emery, R.N. Hannan, R.V. Kesseli, E.A. Kurtz, O. Ochoa, V.E. Rubatzky & W. Waycott, 1993. Genetic Resources of Lettuce and Lactuca Species in California. An Assessment of the USDA and UC Collections and Recommendations for Long-term Security. Report No. 12, Genetic Resources Conservation Program, Division of Agriculture and Natural Resources, University of California, Davis, California.

    Google Scholar 

  • Michaelson, M.J., H.J. Price, J.R. Ellison & J.H. Johnston, 1991. Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry. Amer J Bot 78: 183-188.

    Article  CAS  Google Scholar 

  • Nandini, A.V. & B.G. Murray F.L.S., 1997. Intra-and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Lin Soc 125: 359-366.

    Article  Google Scholar 

  • Price, H.J. & K. Bachmann, 1975. DNA content and evolution in the Microseridinae. Amer J Bot 62: 262-267.

    Article  CAS  Google Scholar 

  • Price, H.J. & J.S. Johnston, 1996. Influence of light on DNA content of Helianthus annuus Linnaeus. Proc Natl Acad Sci USA. 93: 11264-11267.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopman, W.J. Identifying lettuce species (Lactuca subsect. Lactuca, Asteraceae): A practical application of flow cytometry. Euphytica 116, 151–159 (2000). https://doi.org/10.1023/A:1004086503349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004086503349

Navigation